20th ESV Conference 2007
Filtern
Schlagworte
- Bewertung (5)
- Evaluation (assessment) (5)
- Anfahrversuch (4)
- Impact test (veh) (4)
- Prüfverfahren (4)
- Test method (4)
- Anthropometric dummy (2)
- Bein (menschl) (2)
- Biomechanics (2)
- Biomechanik (2)
Institut
- Abteilung Fahrzeugtechnik (5)
- Sonstige (4)
A legform impactor with biofidelic characteristics (FlexPLI) which is being developed by the Japanese Automobile Research Institute (JARI) is being considered as a test tool for legislation within a proposed Global Technical Regulation on pedestrian protection (UNECE, 2006) and therefore being evaluated by the Technical Evaluation Group (TEG) of GRSP. In previous built levels it already showed good test results on real cars as well as under idealised test conditions but also revealed further need for improvement. A research study at the Federal Highway Research Institute (BASt) deals with the question on how leg injury risks of modern car fronts can be revealed, reflected and assessed by the FlexPLI and how the impactor can be used and implemented as a legislative instrument for the type approval of cars according to current and future legislations on pedestrian protection. The latest impactor built level (GTα ) is being evaluated by a general review and assessment of the certification procedure, the knee joint biofidelity and the currently proposed injury criteria. Furthermore, the usability, robustness and durability as a test tool for legislation is examined and an assessment of leg injuries is made by a series of tests with the FlexPLI on real cars with modern car front shapes as well as under idealised test conditions. Finally, a comparison is made between the FlexPLI and the current european legislation tool, the legform impactor according to EEVC WG 17.
The use of proper child restraint systems (CRS) is mandatory for children travelling in cars in most countries of the world. The analysis of the quantity of restrained children shows that more than 90% of the children in Germany are restrained. Looking at the quality of the protection, a large discrepancy between restrained and well protected children can be seen. Two out of three children in Germany are not properly restrained. In addition, considerable difference exists with respect to the technical performance of CRS. For that reason investigations and optimisations on two different topics are necessary: The technical improvement of CRS and the ease of use of CRS. Consideration of the knowledge gained by the comparison of different CRS in crash tests would lead to some improvements of the CRS. But improvement of child safety is not only a technical issue. People should use CRS in the correct way. Misuse and incorrect handling could lead to less safety than correct usage of a poor CRS. For that reason new technical issues are necessary to improve the child safety AND the ease of use. Only the combination of both parts can significantly increase child safety. For the assessment of the safety level of common CRS, frontal and lateral sled tests simulating different severity levels were conducted comparing pairs of CRS which were felt to be good and CRS which were felt to be poor. The safety of some CRS is currently at a high level. All well known products were not damaged in the performed tests. The performance of non-branded CRS was mostly worse than that of the well known products. Although the branded child restraint systems already show a high safety level it is still possible to further improve their technical performance as demonstrated with a baby shell and a harness type CRS.
As set out in the Terms of Reference, the objective of European Enhanced Vehicle-safety Committee (EEVC) Working Group (WG) 15 Car Crash Compatibility and Frontal Impact is to develop a test procedure(s) with associated performance criteria for car frontal impact compatibility. This work should lead to improved car to car frontal compatibility and self protection without decreasing the safety in other impact configuration such as impacts with car sides, trucks, and pedestrians. Since 2003, EEVC WG 15 served as a steering group for the car-to-car activities in the "Improvement of Vehicle Crash Compatibility through the development of Crash Test Procedures" (VC-COMPAT) project that was finalised at the end of 2006 and partly funded by the European Commission. This paper presents the research work carried out in the VC-COMPAT project and the results of its assessment by EEVC WG 15. Other additional work presented by the UK and French governments and industry " in particular the European industry - was taken into consideration. It also identifies current issues with candidate testing approaches. The candidate test approaches are: - an offset barrier test with the progressive deformable barrier (PDB) face in combination with a full width rigid barrier test - a full width wall test with a deformable aluminium honeycomb face and a high resolution load cell wall supplemented by the forces measured in the offset deformable barrier (ODB) test with the current EEVC barrier. These candidate test approaches must assess the structural interaction and give information of frontal force levels and compartment strength for passenger vehicles. Further, this paper presents the planned route map of EEVC WG 15 for the evaluation of the proposed test procedures and assessment criteria.
At the 2005 ESV conference, the International Harmonisation of Research Activities (IHRA) side impact working group proposed a 4 part draft test procedure, to form the basis of harmonisation of regulation world-wide and to help advances in car occupant protection. This paper presents the work performed by a European Commission 6th framework project, called APROSYS, an further development and evaluation of the proposed procedure from a European perspective. The 4 parts of the proposed procedure are: - A Mobile Deformable Barrier test; - An oblique Pole side impact test; - Interior headform tests; - Side Out of Position (OOP) tests. Full scale test and modelling work to develop the Advanced European Mobile Deformable Barrier (AE-MDB) further is described, resulting in a recommendation to revise the barrier face to include a bumper beam element. An evaluation of oblique and perpendicular pole tests was made from tests and numerical simulations using ES-2 and WorldSID 50th percentile dummies. It was concluded that an oblique pole test is feasible but that a perpendicular test would be preferable for Europe. The interior headform test protocol was evaluated to assess its repeatability and reproducibility and to solve issues such as the head impact angle and limitation zones. Recommendations for updates to the test protocol are made. Out-of-position (OOP) tests applicable for the European situation were performed, which included additional tests with Child Restraint Systems (CRS) which use is mandatory in Europe. It was concluded that the proposed IHRA OOP tests do cover the worst case situations, but the current test protocol is not ready for regulatory use.
The PDB, BASt and Opel conducted two test series to evaluate possible effects on the results obtained using the EEVC WG17 Lower Legform Impactor as a test tool for the assessment of pedestrian safety. The reproducibility and repeatability of the test results were assessed using six legform impactors while keeping the test parameters constant. In the second series one impactor was used and the test parameters were varied to assess the effects on the readings of the legform. The test parameters were velocity, temperature, relative humidity, the point of first contact regarding the deviation in z-direction and the deviations of the pitch, roll and yaw angle. The tests were performed using an inverse setup, i.e. the legform was hit by a guided linear impactor equipped with a honeycomb deformation element. This setup was chosen to be able to vary each single parameter while avoiding variations of the other test parameters at the same time. The test parameters were varied stronger than allowed in regulatory use in order to determine possible dependencies between the parameters and the readings which were acceleration, bending angle and shear displacement.