Refine
Document Type
- Conference Proceeding (14)
- Book (2)
- Article (1)
- Working Paper (1)
Keywords
- Fußgänger (11)
- Pedestrian (11)
- Bewertung (9)
- Evaluation (assessment) (9)
- Prüfverfahren (9)
- Test method (9)
- Injury (7)
- Verletzung (7)
- Anthropometric dummy (6)
- Collision (6)
Institute
Radfahren liegt im Trend. In Kommunen, Ländern und auf Bundesebene wird das Ziel verfolgt, den Anteil des Fahrradverkehrs als ökologische Mobilitätsform weiter zu steigern. Die Förderung des Radverkehrs kann einen wesentlichen Beitrag zur Erreichung wichtiger verkehrspolitischer Ziele wie der Reduzierung der CO2-Emmissionen oder der Verringerung von innerstädtischen Verkehrsproblemen liefern.
Dass vor allem in Großstädten immer mehr Menschen Rad fahren, führt allerdings auch dazu, dass es auf den vorhandenen Radverkehrsanlagen immer enger wird. Radfahren findet in der Stadt im Allgemeinen in einem gemeinsam genutzten Straßenraum statt. Dabei ist der zur Verfügung stehende Verkehrsraum in Städten begrenzt und geprägt von einer Konkurrenz zwischen Mobilitätsformen um entsprechende Verkehrsflächen. Vor diesem Hintergrund stellt eine Umverteilung von Flächen hinsichtlich z. B. der Akzeptanz aller Verkehrsteilnehmenden eine große Herausforderung dar. Es müssen daher Gesamtlösungen gefunden werden, die auf breite Zustimmung in der Bevölkerung stoßen, da sich optimale Bedingungen für alle nur schwer realisieren lassen. Hierbei ist das übergeordnete Ziel, ein rücksichtsvolles Miteinander im Straßenverkehr zu fördern.
Das vorliegende Sicherheitsforschungsprogramm der Bundesanstalt für Straßenwesen (BASt) greift die Fragestellungen auf, konzentriert sich auf Forschungsaktivitäten zum sicheren Radfahren in einem gemeinsam genutzten Straßenraum und damit auf Interaktionen insbesondere zwischen Rad-, Kfz- und Fußverkehr auf innerörtlichen Straßen, um letztendlich wissenschaftlich fundierte Erkenntnisse und Maßnahmenansätze bereitstellen zu können.
Hierbei stehen folgende Forschungsthemen im Fokus:
• Verkehrskultur, -klima und rücksichtsvolles Miteinander
• Gefahrenwahrnehmung und -bewertung
• Bekanntheit und Einhaltung von Verkehrsregeln
• Infrastrukturelemente entwickeln und pilothaft untersuchen
• Maßnahmenumsetzung und deren Hindernisse in der Praxis
• Technische Maßnahmen
Das Forschungsprogramm ist in Teilen offen und dynamisch angelegt, so dass neue Erkenntnisse und Erfahrungen noch Eingang finden können. Alle Projekte sind so angelegt, dass sich die zu erwartenden Erkenntnisse am realen Bedarf in der Praxis orientieren.
Bei der Umsetzung von Maßnahmen zur Förderung des Radverkehrs sehen sich die Kommunen immer wieder vor Herausforderungen gestellt, die aus örtlichen und verkehrlichen Gegebenheiten resultieren. Um in solchen Fällen trotzdem dem Rad- und Kfz-Verkehr dienliche Lösungen zu finden, werden in enger Zusammenarbeit zwischen der BASt und der Stadt Freiburg im Breisgau pilothafte Untersuchungen durchgeführt werden.
Die Umsetzung des Sicherheitsforschungsprogramms mit einer Laufzeit von sechs Jahren erfolgt interdisziplinär und wird von einer abteilungsübergreifenden und interdisziplinären Arbeitsgruppe innerhalb der BASt gesteuert. Neben einem kontinuierlichen Monitoring des Programmfortschritts wird es auch Aufgabe dieser Arbeitsgruppe sein, gewonnene Erkenntnisse zu verbreiten und regelmäßig über den Programmfortschritt zu berichten. Die Ergebnisse von abgeschlossenen Teilprojekten werden u. a. in der Schriftenreihe der BASt veröffentlicht. Zum Abschluss des Programms wird durch die Arbeitsgruppe ein zusammenfassender Bericht erstellt.
Test and assessment procedures for passive pedestrian protection based on developments by the European Enhanced Vehicle-safety Committee (EEVC) have been introduced in world-wide regulations and consumer test programmes, with considerable harmonization between these programmes. Nevertheless, latest accident investigations reveal a stagnation of pedestrian fatality numbers on European roads running the risk of not meeting the European Union- goal of halving the number of road fatalities by the year 2020. The branch of external road user safety within the EC-funded research project SENIORS under the HORIZON 2020 framework programme focuses on investigating the benefit of modifications to pedestrian test and assessment procedures and their impactors for vulnerable road users with focus on the elderly. Injury patterns of pedestrians and cyclists derived from the German In-Depth Accident Study (GIDAS) show a trend of AIS 2+ and AIS 3+ injuries getting more relevant for the thorax region in crashes with newer cars (Wisch et al., 2017), while maintaining the relevance for head and lower extremities. Several crash databases from Europe such as GIDAS and the Swedish Traffic Accident Data Acquisition (STRADA) also show that head, thorax and lower extremities are the key affected body regions not only for the average population but in particular for the elderly. Therefore, the SENIORS project is focusing on an improvement of currently available impactors and procedures in terms of biofidelity and injury assessment ability towards a better protection of the affected body regions, incorporating previous results from FP 6 project APROSYS and subsequent studies carried out by BASt. The paper describes the overall methodology to develop revised FE impactor models. Matched human body model and impactor simulations against generic test rigs provide transfer functions that will be used for the derivation of impactor criteria from human injury risk functions for the affected body regions. In a later step, the refined impactors will be validated by simulations against actual vehicle front-ends. Prototyping and adaptation of test and assessment procedures as well as an impact assessment will conclude the work of the project at the final stage. The work will contribute to an improved protection of vulnerable road users focusing on the elderly. The use of advanced human body models to develop applicable assessment criteria for the revised impactors is intended to cope with the paucity of actual biomechanical data focusing on elderly pedestrians. In order to achieve optimized results in the future, the improved test methods need to be implemented within an integrated approach, combining active with passive safety measures. In order to address the developments in road accidents and injury patterns of vulnerable road users, established test and assessment procedures need to be continuously verified and, where needed, to be revised. The demographic change as well as changes in the vehicle fleet, leading to a variation of accident scenarios, injury frequencies and injury patterns of vulnerable road users are addressed by the work provided by the SENIORS project, introducing updated impactors for pedestrian test and assessment procedures.
A flexible pedestrian legform impactor (FlexPLI) has been evaluated by a Technical Evaluation Group (Flex-TEG) of the Working Party on Passive Safety (GRSP) of the United Nations Economic Commission for Europe (UN-ECE). It will be implemented within phase 2 of the global technical regulation (GTR 9) as well as within a new ECE regulation on pedestrian safety as a test tool for the assessment of lower extremity injuries in lateral vehicle-to-pedestrian accidents (UN-ECE 2010-1, 2010-2 and 2010-3). Due to its biofidelic properties in the knee and tibia section, the FlexPLI is found to having an improved knee and tibia injury assessment ability when being compared to the current legislative test tool, the lower legform impactor developed by the Pedestrian Safety Working Group of the European Enhanced Vehicle-safety Committee (EEVC WG 17). However, due to a lack of biofidelity in terms of kinematics and loadings in the femur part of the FlexPLI, an appropriate assessment of femur injuries is still outstanding. The study described in this paper is aimed to close this gap. Impactor tests with the FlexPLI at different impact heights on three vehicle frontends with Sedan, SUV and FFV shape are performed and compared to tests with a modified FlexPLI with upper body mass. Full scale validation tests using a modified crash test dummy with attached FlexPLI that are carried out for the first time prove the more humanlike responses of the femur section with applied upper body mass. Apart from that they also show that the impact conditions described in the current technical provisions for tests with the FlexPLI don"t necessarily compensate the missing torso mass in terms of knee and tibia loadings either. Therefore it can be concluded that an applied upper body mass will contribute to a more biofidelic overall behavior of the legform and subsequently an improved injury assessment ability of all lower extremity injuries addressed by the FlexPLI. Nevertheless, the validity of the original as well as the modified legform for tests against vehicles with extraordinary high bumpers as well as flat front vehicles still needs to be evaluated in detail. A first clue is given by the application of an additional accelerometer to the legform.
The head impact of pedestrians in the windscreen area shows a high relevance in real-world accidents. Nevertheless, there are neither biomechanical limits nor elaborated testing procedures available. Furthermore, the development of deployable protection systems like pop-up bonnets or external airbags has made faster progress than the corresponding testing methods. New requirements which are currently not considered are taken into account within a research project of BASt and the EC funded APROSYS (Advanced PROtection SYStems) integrated project relating to passive pedestrian protection. Testing procedures for head impact in the windscreen area should address these new boundary conditions. The presented modular procedure combines the advantages of virtual testing, including full-scale multi-body and finite element simulations, as well as hardware testing containing impactor tests based on the existing procedures of EEVC WG 17. To meet the efforts of harmonization in legislation, it refers to the Global Technical Regulation of UNECE (GTR No. 9). The basis for this combined hardware and virtual testing procedure is a robust categorization covering all passenger cars and light commercial vehicles and defining the testing zone including the related kinematics. The virtual testing part supports also the choice of the impact points for the hardware test and determines head impact timing for testing deployable systems. The assessment of the neck rotation angle and sharp edge contact in the rear gap of pop-up bonnets is included. For the demonstration of this procedure, a hardware sedan shaped vehicle was modified by integrating an airbag system. In addition, tests with the Honda Polar-II Dummy were performed for an evaluation of the new testing procedure. Comparing these results, it was concluded that a combination of simulation and updated subsystem tests forms an important step towards enhanced future pedestrian safety systems considering the windscreen area and the deployable systems.
A biofidelic flexible pedestrian legform impactor (FlexPLI) has been developed from the year 2000 onwards and evaluated by a technical evaluation group (Flex-TEG) of UN-ECE GRSP. A recently established UN-ECE GRSP Informal Group on GTR9 Phase 2 is aiming at introducing the FlexPLI within world-wide regulations on pedestrian safety (Phase 2 of GTR No. 9 as well as the new UN regulation 127 on pedestrian safety) as a test tool for the assessment of lower extremity injuries in lateral vehicle-to-pedestrian accidents. Besides, the FlexPLI has already been introduced within JNCAP and is on the Euro NCAP roadmap for 2014. Despite of the biofidelic properties in the knee and tibia sections, several open issues related to the FlexPLI, like the estimation of the cost benefit, the feasibility of vehicle compliance with the threshold values, the robustness of the impactor and of the test results, the comparability between prototype and production level and the finalization of certification corridors still needed to be solved. Furthermore, discussions with stakeholders about a harmonized lower legform to bumper test area are still going on. This paper describes several studies carried out by the Federal Highway Research Institute (BASt) regarding the benefit due to the introduction of the FlexPLI within legislation for type approval, the robustness of test results, the establishment of new assembly certification corridors and a proposal for a harmonized legform to bumper test area. Furthermore, a report on vehicle tests that previously had been carried out with three prototype legforms and were now being repeated using legforms with serial production status, is given. Finally, the paper gives a status report on the ongoing simulation and testing activities with respect to the development and evaluation of an improved test procedure with upper body mass for assessing pedestrian femur injuries.
A flexible pedestrian legform impactor (FlexPLI) with biofidelic characteristics is aimed to be implemented within global legislation on pedestrian protection. Therefore, it is being evaluated by a technical evaluation group (Flex-TEG) of GRSP with respect to its biofidelity, robustness, durability, usability and protection level (Zander, 2008). Previous studies at the Federal Highway Research Institute (BASt) and other laboratories already showed good progress concerning the general development, but also the need for further improvement and further research in various areas. An overview is provided of the different levels of development and all kinds of evaluation activities of the Flex-TEG, starting with the Polar II full scale pedestrian dummy as its origin and ending up with the latest legform impactor built level GTR that is expected to be finalized by the end of the year 2009. Using the latest built levels as a basis, gaps are revealed that should be closed by future developments, like the usage of an upper body mass (UBM), the validation of the femur loads, injury risk functions for the cruciate knee ligaments and an appropriate certification method. A recent study on an additional upper body mass being applied for the first time to the Flex-GT is used as means of validation of recently proposed modified impact conditions. Therefore, two test series on a modern vehicle front using an impactor with and without upper body mass are compared. A test series with the Flex-GTR will be used to study both the comparability of the impact behavior of the GT and GTR built level as well as the consistency of test results. Recommendations for implementation within legislation on pedestrian protection are made.
Evaluation of the performance of competitive headforms as test tools for interior headform testing
(2009)
The European Research Project APROSYS has evaluated the interior headform test procedure developed by EEVC WG 13, representing the head contact in the car during a lateral impact. One important aspect within this test procedure was the selection of an appropriate impactor. The WG13 procedure currently uses the Free Motion Headform as used within the FMVSS 201. The ACEA 3.5 kg headform used in Phase 1 of the European Directive and the future European Regulation on Pedestrian Protection is still discussed as a possible alternative. This paper reports work performed by the Federal Highway Research Institute (BASt) as a part of the APROSYS Task 1.1.3. The study compares the two headform impactors according to FMVSS and ACEA, in a series of basic tests in order to evaluate their sensitivity towards different impact angles, impact accuracy, the effect of differences to impactors of the same type and the effects of the repeatability and reproducibility of the test results. The test surface consisted of a steel tube covered with PU foam and PVC, representing the car interior to be tested. Despite of the higher mass of the FMH the HIC values of this impactor were generally lower than those of the ACEA headform. The FMH showed a higher repeatability of test results but a high sensitivity on the angle of roll, the spherical ACEA impactor performed better with regards to the reproducibility. In case of the ACEA impactor-, the angle of roll had no influence.
Anhand von zwei verschiedenen Versuchskonfigurationen wurde das Schutzpotential von Kopfschutzsystemen (Fahrradhelm und airbagbasiertes System) untersucht. Hierbei wurden die resultierende Kopfbeschleunigung als Messwert sowie das Kopfverletzungskriterium HIC bei Versuchen ohne und mit Kopfschutzsystem vergleichend gegenübergestellt.
For a number of EU regulatory acts Virtual Testing (VT) is already allowed for type approval (see Commission Regulation No. 371/2010 of 16 April 2010 amending the Framework Directive 2007/46/EC). However, only a very general procedure on how to apply VT for type approval is provided. Technical details for specific regulatory acts are not given yet. The main objective of the European project IMVITER (IMplementation of VIrtual TEsting in Safety Regulations) was to promote the implementation of VT in safety regulations. When proposing VT procedures the new regulation was taken into account, in particular, addressing open issues. Special attention was paid to pedestrian protection as pilot cases. A key aspect for VT implementation is to demonstrate that the employed simulation models are reliable. This paper describes how the Verification and Validation (V&V) method defined by the American Society of Mechanical Engineers was adapted for pedestrian protection VT based assessment. or the certification of headform impactors an extensive study was performed at two laboratories to assess the variability in calibration tests and equivalent results from a set of simulation models. Based on these results a methodology is defined for certification of headform impactor simulation models. A similar study was also performed with one vehicle in the type approval test setup. Its bonnet was highly instrumented and subjected to 45 impacts in five different positions at two laboratories in order to obtain an estimation of the variability in the physical tests. An equivalent study was performed using stochastic simulation with a metamodel fed with observed variability in impact conditions of physical headforms. An estimation of the test method uncertainty was obtained and used in the definition of a validation corridor for simulation models. Validation metric and criteria were defined in cooperation with the ISO TC22 SC10 and SC12 WG4 "Virtual Testing". A complete validation procedure including different test setups, physical magnitudes and evaluation criteria is provided. A detailed procedural flowchart is developed for VT implementation in EC Regulation No 78/2009 based on a so called "Hybrid VT" approach, which combines real hardware based head impact tests and simulations. This detailed flowchart is shown and explained within this paper. Another important point within the virtual testing based procedures is the documentation of relevant information resulting from the verification and validation process of the numerical models used. For this purpose report templates were developed within the project. The proposed procedure fixes minimum V&V requirements for numerical models to be confidently used within the type-approval process. It is not intended to be a thorough guide on how to build such reliable models. Different modeling methodologies are therefore possible, according to particular OEM know-how. These requirements respond to a balance amongst the type-approval stakeholders interests. A cost-benefit analysis, which was also performed within the IMVITER project, supports this approach, showing the conditions in which VT implementation is beneficial. Based on the experience gained in the project and the background of the experts involved an outlook is given as a roadmap of VT implementation, identifying the most important milestones to be reached along the way to a future vehicle type approval procedure supported by VT. The results presented in this paper show an important step addressing open questions and fostering the future acceptance of virtual testing in pedestrian protection type approval procedures.
Since the beginning of the testing activities related to passive pedestrian safety, the width of the test area being assessed regarding its protection level for the lower extremities of vulnerable road users has been determined by geometrical measurements at the outer contour of the vehicle. During the past years, the trend of a decreased width of the lower extremity test and assessment area realized by special features of the outer vehicle frontend design could be observed. This study discusses different possibilities for counteracting this development and thus finding a robust definition for this area including all structures with high injury risk for the lower extremities of vulnerable road users in the event of a collision with a motor vehicle. While Euro NCAP is addressing the described problem by defining a test area under consideration of the stiff structures underneath the bumper fascia, a detailed study was carried out on behalf of the European Commission, aiming at a robust, worldwide harmonized definition of the bumper test area for legislation, taking into account the specific requirements of different certification procedures of the contracting parties of the UN/ECE agreements from 1958 and 1998. This paper details the work undertaken by BASt, also serving as a contribution to the TF-BTA of the UN/ECE GRSP, towards a harmonized test area in order to better protect the lower extremities of vulnerable road users. The German In-Depth Accident Database GIDAS is studied with respect to the potential benefit of a revised test area. Several practical options are discussed and applied to actual vehicles, investigating the differences and possible effects. Tests are carried out and the results studied in detail. Finally, a proposal for a feasible definition is given and a suggestion is made for solving possible open issues at angled surfaces due to rotation of the impactor. The study shows that, in principle, there is a need for the entire vehicle width being assessed with regard to the protection potential for lower extremities of vulnerable road users. It gives evidence on the necessity for a robust definition of the lower extremity test area including stiff and thus injurious structures at the vehicle frontend, especially underneath the bumper fascia. The legal definition of the lower extremity test area will shortly be almost harmonized with the robust Euro NCAP requirements, as already endorsed by GRSP, taking into account injurious structures and thus contributing to the enhanced protection of vulnerable road users. After finalization of the development of a torso mass for the flexible pedestrian legform impactor (FlexPLI) it is recommended to consider again the additional benefit of assessing the entire vehicle width.
A series of drop tests and vehicle tests with the adult head impactor according to Regulation (EC) 631/2009 and drop tests with the phantom head impactor according to UN Regulation No. 43 have been carried out by the German Federal Highway Research Institute (BASt) on behalf of the German Federal Ministry of Transport, Building and Urban Development (BMVBS). Aim of the test series was to study the injury risk for vulnerable road users, especially pedestrians, in case of being impacted by a motor vehicle in a way described within the European Regulations (EC) 78/2009 and (EC) 631/2009. Furthermore, the applicability of the phantom head drop test described in UN Regulation No. 43 for plastic glazing should be investigated. In total, 30 drop tests, thereof 18 with the adult head impactor and 12 with the phantom head impactor, and 49 vehicle tests with the adult head impactor were carried out on panes of laminated safety glass (VSG), polycarbonate (PC) and laminated polycarbonate (L-PC). The influence of parameters such as the particular material properties, test point locations, fixations, ambient conditions (temperature and impact angle) was investigated in detail. In general, higher values of the Head Injury Criterion (HIC) were observed in tests on polycarbonate glazing. As the HIC is the current criterion for the assessment of head injury risk, polycarbonate glazing has to be seen as more injurious in terms of vulnerable road user protection. In addition, the significantly higher rebound of the head observed in tests with polycarbonate glazing is suspected to lead to higher neck loads and may also cause higher injury risks in secondary impacts of vulnerable road users. However, as in all tests with PC glazing no damage of the panes was observed, the risk of skin cut injuries may be expected to be reduced significantly. The performed test series give no indication for the test procedure prescribed in UN Regulation No. 43 as a methodology to approve glass windscreen not being feasible for polycarbonate glazing, as all PC panes tested fulfilled the UN R 43 requirements. The performance of the windscreen area will not be relevant for vehicle type approval according to the upcoming UN Regulation for pedestrian protection. However, it is recommended that pedestrian protection being considered for plastic windscreens to ensure at least the same level of protection as glass windscreens.
Test and assessment procedures for passive pedestrian protection of passenger cars are in place for many years within world-wide regulations as well as consumer test programmes. Nevertheless, recent accident investigations show a stagnation of pedestrian fatality numbers on European roads alongside increasing injury severities for older road users. The EU-funded SENIORS (Safety ENhancing Innovations for Older Road userS) project developed and evaluated a thorax injury prediction tool (TIPT) for later incorporation within test and assessment procedures. Accident data indicates an increasing portion of AIS2 and AIS3+ thoracic injuries of older pedestrians and cyclists which are currently not assessed in any test procedure for vulnerable road users. Therefore, SENIORS focused on the development of a test tool predicting the risk of rib fractures of vulnerable road users (VRU). While injury risk functions were reanalyzed, human body model (HBM) simulations against categorized generic vehicle frontends served as input for the definition of test setups and corresponding impact parameters. TIPT component tests against a generic frontend and an actual vehicle were used for the evaluation of the technical feasibility. The TIPT component tests shows the general feasibility of a test procedure for the assessment of thoracic injuries, with good repeatability and reproducibility of kinematics and results. Impact parameters such as the inclination angles of the thorax, angles of the velocity vector and impact speeds well replicate the parameters gained from the HBM simulations. The proposed markup and assessment scheme offers the possibility of a homogeneous evaluation of the protection potential of vehicle frontends while maintaining justifiable testing efforts. During evaluation testing, the proposed requirements were entirely met. The developed prototype of TIPT and launching system offer impact angles and speeds as suggested by HBM simulations. However, since thorax impacts during pedestrian accidents do not occur perpendicularly to the vehicle surface in most cases, the TIPT built-in linear potentiometers do not acquire the true resultant intrusions on the ribcage and thus, TIPT rib deflections do not reflect the actual human injury risk. However; for the impact forward to the bonnet leading edge, the TIPT seems applicable without further modifications. The test and assessment procedures using the TIPT offer for the first time the possibility of replicating the kinematics of a pedestrian thorax with a component test. The developed assessment scheme gives a first indication on how the risk for thoracic injuries could be implemented within the Euro NCAP Box 3 assessment. Future development of the TIPT may focus on implementing a rib cage that can deflect in all axes in a humanlike way.
Autonomous Emergency Braking (AEB) systems for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programmes, e.g. Euro NCAP, are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully, is to determine how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit related basis. The objective of this research was to develop a benefit based methodology for assessment of integrated pedestrian protection systems with pre-crash braking and passive safety components. A methodology has been developed which calculates the cost of pedestrian injury expected, assuming all pedestrians in the target population (i.e. pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car’s AEB (if fitted) and the passive safety protection offered by the car’s frontal structure. For rating purposes, this cost can be normalised by comparing it to the cost calculated for selected cars. The methodology uses the speed reductions measured in AEB tests to determine the speed at which each casualty in the target population will be impacted. The injury to each casualty is then calculated using the results from standard Euro NCAP pedestrian impactor tests and injury risk curves. This injury is converted into cost using ‘Harm’ type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and GB and the results of a benefit analysis performed by the EU FP7 AsPeCSS project. This resulted in German and GB versions of the methodology. The methodology was used to assess cars with good, average and poor Euro NCAP pedestrian ratings, with and without a current AEB system fitted. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Also, it was found that the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area because this is where head impact occurs for a large proportion of casualties. The major limitation within the methodology is the assumption used implicitly during weighting. This is that the cost of casualty injuries to body areas, such as the thorax, not assessed by the headform and legform impactors, and other casualty injuries such as those caused by ground impact, are related linearly to the cost of casualty injuries assessed by the impactors. A methodology for assessment of integrated pedestrian protection systems was developed. This methodology is of interest to consumer rating programmes which wish to include assessment of these systems. It also raises the interesting issue if the head impact test area should be weighted to reflect better real-world benefit.
During the past five years, a Euro NCAP technical working group on pedestrian safety has been working on improving test and assessment procedures for enhanced passive pedestrian safety. After harmonizing the tools and procedures as much as possible with legislation, the work was mainly focused on the development of grid procedures for the pedestrian body regions head, upper leg with pelvis and lower leg with knee. Furthermore, the test parameters for the head and the upper leg were revised, a new lower legform impactor was introduced and the injury thresholds were adjusted or, where necessary, the injury criteria were changed. Finally, the assessment limits and colour scheme were refined, widening the range and adding two more colours in order to provide a more detailed description of the pedestrian safety performance. By abstaining from an assessment based on a worst point selection philosophy, the improved test point determination procedures that were introduced during the years 2013 and 2014 give a more homogeneous, high resolution picture of the pedestrian safety performance of the vehicle frontends. By using a uniform grid for each test zone approximately 200 test points, evenly distributed within each area, can now be assessed per vehicle. The introduction of the flexible pedestrian legform impactor in 2014 enables a more realistic injury prediction of the knee and the tibia using a biofidelic test tool. With the new upper legform test that has been launched in 2015 the assessment in that area is now focusing on the injured body region instead of the injury causing vehicle part and thus is aligned with the approach in the remaining body regions head and lower leg. At the same time, a monitoring test with the headform impactor against the bonnet leading edge is closing the possible gap between the test areas to identify injury causing vehicle parts that moved out of focus due to the introduction of the new upper legform test. The paper describes the new test and assessment procedures with their underlying philosophy and gives an outlook in terms of open issues, specifying the needs for further improvement in the future. In parallel to the work of the pedestrian subgroup, a Euro NCAP working group on heavy vehicles introduced a set of protocol changes in 2011 that were related to the assessment of M1 vehicles derived from commercial vehicles, with a gross vehicle weight between 2.5 and 3.5 tons and 8 or 9 seats. The paper also investigates the applicability of the new pedestrian test and assessment procedures to heavy vehicles.
Supported by field accident data and monitoring results of European Regulation (EC) No. 78/2009, recent plans of the European Commission regarding a way forward to improve passive safety of vulnerable road users include, amongst other things, an extension of the head test area. The inclusion of passive cyclist safety is also being considered by Euro NCAP. Although passenger car to cyclist collisions are often severe and have a significant share within the accident statistics, cyclists are neither considered sufficiently in the legislative nor in the consumer ratings tests. Therefore, a test procedure to assess the protection potential of vehicle fronts in a collision with cyclists has been developed within a current research project. For this purpose, the existing pedestrian head impact test procedures were modified in order to include boundary conditions relevant for cyclists as the second big group of vulnerable road users. Based on an in-depth analysis of passenger car to cyclist accidents in Germany the three most representative accident constellations have been initially defined. The development of the test procedure itself was based on corresponding simulations with representative vehicle and bicycle models. In addition to different cyclist heights, reaching from a 6-year-old child to a 95%-male, also four pedal positions were considered. By reconstruction of a real accident the defined simulation parameters could be validated in advance. The conducted accident kinematics analysis shows for a large portion of the constellations an increased head impact area, which can reach beyond the roof leading edge, as well as high average values for head impact velocity and angle. Based on the simulation data obtained for the different vehicle models, cyclist-specific test parameters for impactor tests have been derived, which have been further examined in the course of head and leg impact tests. In order to study the cyclist accident kinematics under real test conditions, different full scale tests with a Polar-II dummy positioned on a bicycle have been conducted. Overall, the tests showed a good correlation with the simulations and support the defined boundary test conditions. Typical accident scenarios and simulations reveal higher head impact locations, angles and velocities. An extended head impact area with modified test parameters will contribute to an improved protection of vulnerable road users including cyclists. However, due to significantly differing impact kinematics and postures between the lower extremities of pedestrians and cyclists, these injuries cannot be addressed by the means of current test tools such as the flexible pedestrian legform impactor FlexPLI. Based on the findings obtained within the project as well as the existing pedestrian protection requirements a cyclist protection test procedure for use in legislation and consumer test programmes has been developed, whose requirements have been transferred into a corresponding test specification. This specification provides common head test boundary conditions for pedestrians and cyclists, whereby the existing requirements are modified and two parallel test procedures are avoided.
A legform impactor with biofidelic characteristics (FlexPLI) which is being developed by the Japanese Automobile Research Institute (JARI) is being considered as a test tool for legislation within a proposed Global Technical Regulation on pedestrian protection (UNECE, 2006) and therefore being evaluated by the Technical Evaluation Group (TEG) of GRSP. In previous built levels it already showed good test results on real cars as well as under idealised test conditions but also revealed further need for improvement. A research study at the Federal Highway Research Institute (BASt) deals with the question on how leg injury risks of modern car fronts can be revealed, reflected and assessed by the FlexPLI and how the impactor can be used and implemented as a legislative instrument for the type approval of cars according to current and future legislations on pedestrian protection. The latest impactor built level (GTα ) is being evaluated by a general review and assessment of the certification procedure, the knee joint biofidelity and the currently proposed injury criteria. Furthermore, the usability, robustness and durability as a test tool for legislation is examined and an assessment of leg injuries is made by a series of tests with the FlexPLI on real cars with modern car front shapes as well as under idealised test conditions. Finally, a comparison is made between the FlexPLI and the current european legislation tool, the legform impactor according to EEVC WG 17.
Recent accident statistics from the German national database state bicyclists being the second endangered group of vulnerable road users besides pedestrians. With 399 fatalities, more than 14.000 seriously injured and more than 61.000 slightly injured persons on german roads in the year 2011, the group of bicyclists is ranked second of all road user groups (Statistisches Bundesamt, 2012). While the overall bicycle helmet usage frequency in Germany is very low, evidence is given that its usage leads to a significant reduction of severe head injuries. After an estimation of the benefit of bicycle helmet usage as well as an appropriate test procedure for bicyclists, this paper describes two different approaches for the improvement of bicyclist safety. While the first one is focusing on the assessment of the vehicle based protection potential for bicyclists, the second one is concentrating on the safety assessment of bicycle helmets. Within the first part of the study the possible revision of the existing pedestrian testing protocols is being examined, using in depth accident data, full scale simulation and hardware testing. Within the second part of the study, the results of tests according to supplemental test procedures for the safety assessment of bicycle helmets developed by the German Federal Highway Research Institute (BASt) are presented. An additional full scale test performed at reduced impact speed proves that measures of active vehicle safety as e.g. braking before the collision event do not necessarily always lead to a reduction of injury severity.
The PDB, BASt and Opel conducted two test series to evaluate possible effects on the results obtained using the EEVC WG17 Lower Legform Impactor as a test tool for the assessment of pedestrian safety. The reproducibility and repeatability of the test results were assessed using six legform impactors while keeping the test parameters constant. In the second series one impactor was used and the test parameters were varied to assess the effects on the readings of the legform. The test parameters were velocity, temperature, relative humidity, the point of first contact regarding the deviation in z-direction and the deviations of the pitch, roll and yaw angle. The tests were performed using an inverse setup, i.e. the legform was hit by a guided linear impactor equipped with a honeycomb deformation element. This setup was chosen to be able to vary each single parameter while avoiding variations of the other test parameters at the same time. The test parameters were varied stronger than allowed in regulatory use in order to determine possible dependencies between the parameters and the readings which were acceleration, bending angle and shear displacement.