22nd ESV Conference 2011
Filtern
Schlagworte
- Conference (9)
- Konferenz (9)
- Anfahrversuch (4)
- Deutschland (4)
- Germany (4)
- Impact test (veh) (4)
- Analyse (math) (3)
- Analysis (math) (3)
- Safety (3)
- Sicherheit (3)
Institut
Proposal for a test procedure of assistance systems regarding preventive pedestrian protection
(2011)
This paper is showing a proposal for a test procedure regarding preventive pedestrian protection based on accident analysis. Over the past years pedestrian protection has become an increasing importance also during the development phase of new vehicles. After a phase of focusing on secondary safety, there are current activities to detect a possible collision by assistance systems. Such systems have the task to inform the driver and/or automatically activate the brakes. How practical is such a system? In which kind of traffic situations will it work? How is it possible to check the effectiveness of such a system? To test the effectiveness, currently there are no generally approved identifiable procedures. It is reasonable that such a test should be based on real accidents. The test procedure should be designed to test all systems, independent of the system- working principle. The vFSS group (advanced Forward-looking Safety Systems) was founded to develop a proposal for a technology independent test procedure, which reflects the real accident situation. This contribution is showing the results of vFSS. The developed test procedure focuses on accidents between passenger cars and pedestrians. The results are based on analysis results of in-depth databases of GIDAS, German insurers and DEKRA and added by analysis of national and international statistics. The in-depth analysis includes many pre-crash situations with several influencing factors. The factors are e. g. speed of the car, speed of the pedestrian, moving direction and a possible obscuration of the pedestrian by an object. The results comprise also the different situations of adults and children. Furthermore, they include details regarding influence of the lighting conditions (daylight or night) especially with respect to the accident consequences. In fact, more accidents happen at daylight, but fatal accidents are more often at night. A clustering of parameter combinations was found which represents typical accident scenarios. There are six typical accident scenarios which were merged in four test scenarios. The test scenarios are varying the starting position of the pedestrian, the pedestrian size (adult or child) and the speed of the pedestrian, whereas the speed of the car will not be varied. To ensure the independency from used sensing technologies it is necessary to use a suitable dummy. For example, if sensors are based on infrared, the dummy should emit the temperature of a human being. The test procedure will identify the collision speed as the key parameter for assessing the effectiveness of the tested system. The collision speed is defined as the reduction between initial test speed of the car and impact speed. The assessment of the speed reduction value regarding the safety benefit, however, will be part of a separate procedure.
New vehicle types are extensively tested to check almost all factors that influence ride and handling. With reference to the Association of German Car Tuners" (VDAT e.V.) valuations, approximately 10% of all cars in Germany are being modified by their owners. 28 % of those modifications" sales are divergent wheel-tire combinations, 13 % are tuning measures on the chassis suspension or wheel spacers. In almost all cases the singular modifications present a general permission for specific vehicles they have been tested in. Combined tuning measures, however, are often checked by just one inspector, following a procedure of mostly subjective assessment criteria. Today, critical attributes are only being observed, in case a vehicle is involved in an accident and the modifications are identified as crash causal factors or as a cofactor on the development of a crash. For the first time, a field study allows a survey of safety affecting chassis modifications. The test layout has to comply with some basic conditions. Different vehicle concepts with a wide margin of modifications are required to get a high transferability of the results. A total amount of more than 150 tested vehicles serves the same purpose. The tests are limited concerning the installation time of measurement techniques and the requirement that no damage, defilement or immoderate wear of the vehicles are accepted by their owners. Due to such factors as well as the driver Ìs acceptance, the vehicles are controlled by its owners instead of robots or test drivers. For keeping down the driver- influence, the lane has narrow boundaries and the driver has to drive in strictly adherence to the given instructions. After gathering all modifications, as well as static and kinematic parameters like the toe and camber angle, dynamic testing of predominantly lateral dynamics is conducted. Besides standardized tests like the ISO 3888-2 (Obstacle Avoidance) or the ISO 14512 (Braking on Surfaces with Split Coefficient of Friction), to test the influence of modified kingpin offsets caused by wheel spacers, some deviant tests are conducted. Those are required due to the demand of objective test results for road tests with vertical induced stimulation of the chassis suspension. Hence, new tests on corner braking with and without vertical stimulation have been developed. The interpretation of data includes thresholds, e.g. the maximum entrance velocity without hitting cones, on the one hand, and the analysis of characteristics of data concerning time and frequency range, "1-second values" and peak response times on the other hand. Besides the thresholds as indicators for the achievable velocities, which are mainly affected by friction coefficients, the vehicle reaction in the course of time characterizes the vehicle reaction in the threshold range and consequently the operational demands on the driver. The field study has started and promises the first long-range analysis of chassis modifications. The results offer a basis for hypothesis and resultant further test layouts for oncoming studies of the identified critical tuning measures.
Topics of this report are: Road accidents in Germany - Socio-economic costs due to road traffic accidents - Vehicle population and road performance " Automotive IT " Electromobility. The following research subjects are presented: Safety of electric vehicles - Forward looking safety systems - Cooperative systems - Safety related traffic information - Freight transport: Action plan freight transport and trial with longer trucks - Lane departure warning systems and Advanced emergency braking systems (AEBS) for heavy duty vehicles - Dummy harmonization " Compatibility - Child safety - Virtual testing - Driving under the influence of drugs, alcohol and medicines - Fire safety of buses - Milled shoulder rumble strips - Conspicuity of powered-two-wheelers - Automatically dipped high beam and rear view mirrors.
For the assessment of vehicle safety in frontal collisions, the crash compatibility between the colliding vehicles is crucial. Compatibility compromises both the self protection and the partner protection properties of vehicles. For the accident data analysis, the CCIS (GB) and GIDAS (DE) in-depth data bases were used. Selection criteria were frontal car accidents with car in compliance with ECE R94. For this study belted adult occupants in the front seats sustaining MAIS 2+ injuries were studied. Following this analysis FIMCAR concluded that the following compatibility issues are relevant: - Poor structural interaction (especially low overlap and over/underriding) - Compartment strength - Frontal force mismatch with lower priority than poor structural interaction In addition injuries arising from the acceleration loading of the occupant are present in a significant portion of frontal crashes. Based on the findings of the accident analysis the aims that shall be addressed by the proposed assessment approach were defined and priorities were allocated to them. The aims and priorities shall help to decide on suitable test procedures and appropriate metrics. In general it is anticipated that a full overlap and off-set test procedure is the most appropriate set of tests to assess a vehicle- frontal impact self and partner protection.
The 2BeSafe project (2-Wheeler Behaviour and Safety) is a collaborative project (co financed by the European Commission) that aims to study the naturalistic behaviour of Powered-Two-Wheeler (PTW) riders in normal and critical riding situations. That includes the interaction between PTW riders and other road users and possible conflicts between them. One of the predominant causes of accidents involving PTWs is that PTWs are often overlooked by other road users. One task of the project lead by BASt therefore deals with possible improvements in conspicuity and the development of recommendations. Particularly using the findings of the studies on conflict situations, promising lighting arrangements to enhance conspicuity of PTWs during the day and at night are selected. An abstract recognizing pattern for PTWs is defined, enabling other road users (e.g. car drivers) to clearly identify riders. Lamps and outfit like lighting configurations of different colours, different helmet lights, reflect / luminescent clothing parts and retro-reflective markings are designed and manufactured. Then, the different solutions are tested in a laboratory setting using experimental motorcycles together with riders to which the equipment is fitted. As result a proposal for a uniform signal pattern or lamp configuration in the front of all motorcycles and riders will be outlined. The contribution first gives a short overview of the topics of the research project that deal with conflicts and their connection with poor conspicuity and then presents in detail the methods used in the activities concerning solutions for the improvement of conspicuity together with first results.
The ASSESS project is a collaborative project that develops test procedures for pre-crash safety systems like Automatic Emergency Braking (AEB). One key criterion for the effectiveness of e.g. AEB is reduction in collision speed compared to baseline scenarios without AEB. The speed reduction for a given system can only be determined in real world tests that will end with a collision. Soft targets that are crashable up to velocities of 80 km/h are state of the art for these assessments, but ordinary balloon cars are usually stationary targets. The ASSESS project goes one step further and defines scenarios with moving targets. These scenarios define vehicle speeds of up to 100 km/h, different collision scenarios and relative collision speeds of up to 80km/h. This paper describes the development of a propulsion system for a soft target that aims to be used with these demanding scenario specifications. The Federal Highway Research Institute- (BASt-) approach to move the target is a self-driving small cart. The cart is controlled either by a driver (open-loop control via remote-control) or by a computer (closed-loop control). Its weight is limited to achieve a good crashability without damages to the test vehicle. To the extent of our knowledge BASt- approach is unique in this field (other carts cannot move at such high velocities or are not crashable). This paper describes in detail the challenges and solutions that were found both for the mechanical construction and the implementation of the control and safety system. One example for the mechanical challenges is e.g. the position of the vehicle- center of gravity (CG). An optimum compromise had to be found between a low CG oriented to the front of the vehicle (good for driveability) and a high CG oriented to the rear of the vehicle (good for crashability). The soft target itself which is also developed within the ASSESS project will not be covered in detail as this is work of a project partner. Publications on this will follow. The paper also shows first test results, describes current limitations and gives an outlook. It is expected that the presented test tools for AEB and other pre-crash safety systems is introduced in the future into consumer testing (NCAP) as well as regulatory testing.
A flexible pedestrian legform impactor (FlexPLI) has been evaluated by a Technical Evaluation Group (Flex-TEG) of the Working Party on Passive Safety (GRSP) of the United Nations Economic Commission for Europe (UN-ECE). It will be implemented within phase 2 of the global technical regulation (GTR 9) as well as within a new ECE regulation on pedestrian safety as a test tool for the assessment of lower extremity injuries in lateral vehicle-to-pedestrian accidents (UN-ECE 2010-1, 2010-2 and 2010-3). Due to its biofidelic properties in the knee and tibia section, the FlexPLI is found to having an improved knee and tibia injury assessment ability when being compared to the current legislative test tool, the lower legform impactor developed by the Pedestrian Safety Working Group of the European Enhanced Vehicle-safety Committee (EEVC WG 17). However, due to a lack of biofidelity in terms of kinematics and loadings in the femur part of the FlexPLI, an appropriate assessment of femur injuries is still outstanding. The study described in this paper is aimed to close this gap. Impactor tests with the FlexPLI at different impact heights on three vehicle frontends with Sedan, SUV and FFV shape are performed and compared to tests with a modified FlexPLI with upper body mass. Full scale validation tests using a modified crash test dummy with attached FlexPLI that are carried out for the first time prove the more humanlike responses of the femur section with applied upper body mass. Apart from that they also show that the impact conditions described in the current technical provisions for tests with the FlexPLI don"t necessarily compensate the missing torso mass in terms of knee and tibia loadings either. Therefore it can be concluded that an applied upper body mass will contribute to a more biofidelic overall behavior of the legform and subsequently an improved injury assessment ability of all lower extremity injuries addressed by the FlexPLI. Nevertheless, the validity of the original as well as the modified legform for tests against vehicles with extraordinary high bumpers as well as flat front vehicles still needs to be evaluated in detail. A first clue is given by the application of an additional accelerometer to the legform.
Thoracic injury is one of the predominant types of severe injuries in frontal accidents. The assessment of the injury risk to the thorax in the current frontal impact test procedures is based on the uni-axial chest deflection measured in the dummy Hybrid III. Several studies have shown that criteria based on the linear chest potentiometer are not sensitive enough to distinguish between different restraint systems, and cannot indicate asymmetric chest loading, which has been shown to correlate to increased injury risk. Furthermore, the measurement is sensitive to belt position on the dummy chest. The objective of this study was to evaluate the optical multipoint chest deflection measurement system "RibEye" in frontal impact sled tests. Therefore the sensitivity of the RibEyesystem to different restraint system parameters was investigated. Furthermore, the issue of signal drop out at the 6 th rib was investigated in this study.A series of sled tests were conducted with the RibEye system in the Hybrid III 50%. The sled environment consisted of a rigid seat and a standard production three-point seat belt system. Rib deflections were recorded with the RibEye system and additionally with the standard chest potentiometer. The tests were carried out at crash pulses of two different velocities (30 km/h and 64 km/h). The tests were conducted with different belt routing to investigate the sensitivity of chest deflection measurements to belt position on the dummy chest. Furthermore, different restraint system parameters were investigated (force limiter level, with or without pretensioning) to evaluate if the RibEye measurements provide additional information to distinguish between restraint system configurations . The results showed that with the RibEye system it was possible to identify the effect of belt routing in more detail. The chest deflections measured with the standard chest potentiometer as well as the maximum deflection measured by RibEye allowed the distinction to be made between different force limiter levels. The RibEye system was also able to clearly show the asymmetric deflection of the rib cage due to belt loading. In some configurations, differences of more than 15 mm were observed between the left and side areas of the chest. Furthermore, the abdomen insert was identified as source of the problem of signal drop out at the 6th rib. Possible solutions are discussed. In conclusion, the RibEye system provided valuable additional information regarding the assessment of restraint systems. It has the potential to enable the evaluation of thoracic injury risk due to asymmetric loading. Further investigations with the RibEye should be extended to tests in a vehicle environment, which include a vehicle seat and other restraint system components such as an airbag.
Safety of light goods vehicles - findings from the German joint project of BASt, DEKRA, UDV and VDA
(2011)
Light goods vehicles (LGVs) are an important part of the vehicle fleet, providing a vital component in the European transportation system. On the other hand, LGVs are in the focus of public discussion regarding road safety. In order to analyse the accident situation of LGVs in an objective manner, Federal Highway Research Institute (BASt), VDA, DEKRA and German Insurers Accident Research (UDV) launched a joint project. The aim of this project, which will be finished by mid of 2011, is to identify reasonable measures which will further improve the safety of LGVs. For the first time, these partners jointly together conducted a research project and put together their know-how in accident research. Analyses are based on real-life accident data from the GIDAS database, the Accident Database of UDV (UDB), the DEKRA database and national statistics. The findings deliver answers to questions within the arena of future legislative actions and consumer protection activities. The analyses of databases cover areas of primary and secondary safety of LGVs with a special focus on advanced driver assistance systems (ADAS), driver behaviour as well as partner and occupant protection. Key figures from national statistics are used to highlight hotspots of accidents of LGVs in Germany. Finally, the proposed countermeasures are assessed regarding their potential effectiveness. Amongst others, the results show that the accident situation of LGVs is very similar to that of passenger cars. Noteworthy variations could be found in collisions with pedestrians, at reversing and regarding accident causes. Occupant safety of LGVs is on a higher level compared to cars. Results indicate that seatbelt use is on a significantly lower level compared to cars. This leads to higher-than-average injury risk for unbelted LGV occupants. When it comes to partner protection, there are problems with compatibility at LGVs. For car occupants there is a very high injury risk when colliding with a LGV. It indicates that higher passive safety test standards for LGVs would be counterproductive if they further increase stiffness of LGVs. The analysis of LGV-pedestrian accidents shows that pedestrian kinematic differs significantly from car-pedestrian accidents. At this point, existing pedestrian related test standards developed for cars cannot be adopted to LGVs. When it comes to active safety, ESC proved its effectiveness once again. Beyond that, rear view cameras, advanced emergency braking systems and lane departure warning systems show a safety potential, too. In addition to any technical countermeasures previously discussed, the importance of the driver behavior and attitude regarding the accident risk was investigated. In order to develop successful actions it is important to understand the main target population. In the case of LGV especially the crafts business and smaller companies are the major contributors the safety issue.