25th ESV Conference 2017
Filtern
Schlagworte
- Radfahrer (7)
- Cyclist (6)
- Prüfverfahren (5)
- Test method (5)
- Collision (4)
- Fußgänger (4)
- Pedestrian (4)
- Accident (3)
- Alte Leute (3)
- Automatic (3)
Institut
Except for corrective steering functions automatic steering is up to now only allowed at speeds up to 10 km/h according to UN Regulation No. 79. Progress in automotive engineering with regard to driver assistance systems and automation of driving tasks is that far that it would be technically feasible to realise automatically commanded steering functions also at higher vehicle speeds. Besides improvements in terms of comfort these automated systems are expected to contribute to road traffic safety as well. However, this safety potential will only be exhausted if automated steering systems are properly designed. Especially possible new risks due to automated steering have to be addressed and reduced to a minimum. For these reasons work is currently ongoing on UNECE level with the aim to amend the regulation dealing with provisions concerning the approval of steering equipment. It is the aim to revise requirements for automatically commanded steering functions (ACSF) so that they can be approved also for higher speeds if certain performance requirements are fulfilled. The paper at hand describes the derivation of reasonable system specifications from an analysis of relevant driving situations with an automated steering system. Needs are explained with regard to covering normal driving, sudden unexpected critical events, transition to manual driving, driver availability and manoeuvres to reach a state of minimal risk. These issues form the basis for the development of test procedures for automated steering to be implemented in international regulations. This holds for system functionalities like automatic lane keeping or automatic lane change as well as for addressing transition situations in which the system has to hand over steering to the driver or addressing emergency situations in which the system has to react instead of the driver.
One main objective of the EU-Project SENIORS is to provide improved methods to assess thoracic injury risk to elderly occupants. In contribution to this task paired simulations with a THOR dummy model and human body model will be used to develop improved thoracic injury risk functions. The simulation results can provide data for injury criteria development in chest loading conditions that are underrepresented in PMHS test data sets that currently proposed risk functions are based on. To support this approach a new simplified generic but representative sled test fixture and CAE model for testing and simulation were developed. The parameter definition and evaluation of this sled test fixture and model is presented in this paper. The justification and definition of requirements for this test set-up was based on experience from earlier studies. Simple test fixtures like the gold standard sled fixture are easy to build and also to model in CAE, but provide too severe belt-only loading. On the other hand a vehicle buck including production components like airbag and seat is more representative, but difficult to model and to be replicated at a different laboratory. Furthermore some components might not be available for physical tests at later stage. The basis of the SENIORS generic sled test set-up is the gold standard fixture with a cable seat back and foot rest. No knee restraint was used. The seat pan design was modified including a seat ramp. The three-point belt system had a generic adjustable load limiter. A pre-inflated driver airbag assembly was developed for the test fixture. Results of THOR test and simulations in different configurations will be presented. The configurations include different deceleration pulses. Further parameter variations are related to the restraint system including belt geometry and load limiter levels. Additionally different settings of the generic airbag were evaluated. The test set-up was evaluated and optimized in tests with the THOR-M dummy in different test configurations. Belt restraint parameters like D-ring position and load limiter setting were modified to provide moderate chest loading to the occupant. This resulted in dummy readings more representative of the loading in a contemporary vehicle than most available PMHS sled tests reported in the literature. However, to achieve a loading configuration that exposes the occupant to even less severe loading comparable to modern vehicle restraints it might be necessary to further modify the test set-up. The new generic sled test set-up and a corresponding CAE model were developed and applied in tests and simulations with THOR. Within the SENIORS project with this test set-up also volunteer and PMHS as well as HBM simulations are performed, which will be reported in other publications. The test environment can contribute in future studies to the assessment of existing and new frontal impact dummies as well as dummy improvements and related instrumentation. The test set-up and model could also serve as a new standard test environment for PMHS and volunteer tests as well as HBM simulations.
The levels of continuous vehicle automation have become common knowledge. They facilitate overall understanding of the issue. Yet, continuous vehicle automation described therein does not cover "automated driving" as a whole: Functions intervening temporarily in accident-prone situations can obviously not be classified by means of continuous levels. Continuous automation describes the shift in workload from purely human driven vehicles to full automation. Duties of the driver are assigned to the machine as automation levels rise. Emergency braking, e.g., is obviously discontinuous and intensive automation. It cannot be classified under this regime. The resulting absence of visibility of these important functions cannot satisfy " especially in the light of effect they take on traffic safety. Therefore, in order to reach a full picture of vehicle automation, a comprehensive approach is proposed that can map out different characteristics as "Principle of Operation" at top level. On this basis informing and warning functions as well as functions intervening only temporarily in near-accident situations can be described. To reach a complete picture, levels for the discontinuous, temporarily intervening functions are proposed " meant to be the counterpart of the continuous levels already in place. This results in a detailed and independent classification for accident-prone situations. This finally provides for the visibility these important functions deserve.
PROSPECT (Proactive Safety for Pedestrians and Cyclists) is a collaborative research project involving most of the relevant partners from the automotive industry (including important active safety vehicle manufacturers and tier-1 suppliers) as well as academia and independent test labs, funded by the European Commission in the Horizon 2020 research program. PROSPECT's primary goal is the development of novel active safety functions, to be finally demonstrated to the public in three prototype vehicles. A sound benefit assessment of the prototype vehicle's functionality requires a broad testing methodology which goes beyond what has currently been used. Since PROSPECT functions are developed to prevent accidents in intersections, a key aspect of the test methodology is the reproduction of natural driving styles on the test track with driving robots. For this task, data from a real driving study with subjects in a suburb of Munich, Germany was used. Further data from Barcelona will be available soon. The data suggests that intersection crossing can be broken down into five phases, two phases with straight deceleration / acceleration, one phase with constant radius and speed turning, and two phases where the bend is imitated or ended. In these latter phases, drivers mostly combine lateral and longitudinal accelerations and drive what is called a clothoid, a curve with curvature proportional to distance travelled, in order to change lateral acceleration smoothly rather than abrupt. The data suggests that the main parameter of the clothoid, the ratio distance travelled to curvature, is mostly constant during the intersections. This parameter together with decelerations and speeds allows the generation of synthetic robot program files for a reproduction of natural driving styles using robots, allowing a much greater reproducibility than what is possible with human test drivers. First tests show that in principle it is possible to use the driving robots for vehicle control in that manner; a challenge currently is the control performance of the robot system in terms of speed control, but it is anticipated that this problem will be solved soon. Further elements of the PROSPECT test methodology are a standard intersection marking to be implemented on the test track which allows the efficient testing of all PROSPECT test cases, standard mobile and light obstruction elements for quick reproduction of obstructions of view, and a concept for tests in realistic surroundings. First tests using the PROSPECT test methodology will be conducted over the summer 2017, and final tests of the prototype vehicles developed within PROSPECT will be conducted in early 2018
The UN Regulation No. 79 is going to be amended to allow automatically commanded steering functions (ACSF) at speeds above 10 km/h. Hence, requirements concerning the approval of automatically performed steering manoeuvres have to be set in order to allow safe use of automatic steering on public roads as well as improve overall road safety for the driver and the surroundings. By order of the German Federal Ministry of Transport and Digital Infrastructure (BMVI), BASt developed and verified physical test procedures for automatic steering to be implemented in UN Regulation No. 79. The usability of currently available test tools was examined. The paper at hand describes these test procedures and presents results from verification tests. The designated tests are divided in three sections: functionality tests, verifications for the transition of control and emergency tests. System functionality tests are auto matic lane keeping, automatic lane change and an automatic abort of an initiated lane change due to traffic. Those tests check if the vehicle remains in its lane (under normal operating conditions), is able to perform safe automatic lane change manoeuvres and if it considers other road users during its manoeuvres. Transition tests examine the vehicle's behaviour when the driver fails to monitor the system and in situations when the system has to hand over the steering control back to the driver. For instance these tests provoke driver-in-the-loop requests by approaching system boundary limitations, like missing lane markings, surpassing maximum lateral acceleration in a bend or even a major system failure. Even further the driver and his inputs are monitored and if the system detects that he is overriding system actions or contrary want to quit the driving task and unfastens the seat belt, it has to shut down and put the human back into manually control and the responsibility of driving. The last series of test consists of two emergency situations in which the system has to react to a time critical event: A hard decelerating vehicle and a stationary vehicle in front both with no lane change possibility for the ACSF vehicle. Some of the tests, especially the emergency manoeuvres, require special target vehicles and propulsion systems. Since no fully automatic steering vehicles are available, a current Mercedes E-Class with Mercedes' "drive pilot" system was used. It was shown that the vehicle is automatically able to brake to a full stop towards a static Euro NCAP target from partial-automatic driving at 90 km/h, that it could brake towards a rapidly decelerating lead vehicle when travelling at 70 km/h, that it was able during partially automatic driving to remain in its lane in normal operation conditions and to perform a automatic (driver initiated) lane change while surveilling the driver- activities.
Accidents between right turning trucks and straight driving cyclists often show massive consequences. Accident severity in terms of seriously or fatally injured cyclists that are involved is much higher than in accidents of other traffic participants in other situations. It seems clear that adding additional mirrors will very likely not improve the situation. At ESV 2015, a methodology to derive test procedures and first test cases as well as requirements for a driver assist system to address blind spot accidents has been presented. However, it was unclear if and how testing of these cases is feasible, to what extent characteristics of different truck concepts (e.g. articulated vehicles, rigid vehicles) influence the test conduction and outcome, and what tolerances should be selected for the different variables. This work is important for the acceptance of a draft regulation in the UN working group on general safety. In the meantime, three test series using a single tractor vehicle, a tractor-semitrailer combination and a rigid vehicle have been conducted. The test tools (e.g. surrogate devices) have been refined. A fully crashable, commercially available bicycle dummy has been tested. If used correct, this dummy does follow a straight line quite precisely and it does not cause any damage to the truck under test in case of accidental impact. The dummy specifications are freely available. During testing, the different vehicle categories resulted in different trajectories being driven. Articulated vehicle combinations did first execute a turn into the opposite direction, and on the other hand, single tractor vehicles did behave comparable to passenger cars. A possible solution to take these behaviors into account is to require the vehicles to drive through a corridor that is narrow for a precise straight-driving phase and extends during the turn. Other investigated parameters are the dummy and vehicle speed tolerances. The results from this research make it possible to draft a regulation for a driver assistance system that helps to avoid blind spot accidents: test cases have been refined, their feasibility has been checked, and corridors for the vehicles and for important parameters (e.g. test speeds) have been set. The test procedure is applicable to all types of heavy goods vehicles. In combination with the accidentology (ESV 2015 paper), the work provides the basis for a regulation for such an assistance system.
Advancing active safety towards the protection of vulnerable road users: the PROSPECT project
(2017)
Accidents involving Vulnerable Road Users (VRU) are still a very significant issue for road safety. According to the World Health Organisation, pedestrian and cyclist deaths account for more than 25% of all road traffic deaths worldwide. Autonomous Emergency Braking Systems have the potential to improve safety for these VRU groups. The PROSPECT project (Proactive Safety for Pedestrians and Cyclists) aims to significantly improve the effectiveness of active VRU safety systems compared to those currently on the market by expanding the scope of scenarios addressed by the systems and improving the overall system performance. The project pursues an integrated approach: Newest available accident data combined with naturalistic observations and HMI guidelines represent key inputs for the system specifications, which form the basis for the system development. For system development, two main aspects are considered: advanced sensor processing with situation analysis, and intervention strategies including braking and steering. All these concepts are implemented in several vehicle prototypes. Special emphasis is put on balancing system performance in critical scenarios and avoiding undesired system activations. For system validation, testing in realistic scenarios will be done. Results will allow the performance assessment of the developed concepts and a cost-benefit analysis. The findings within the PROSPECT project will contribute to the generation of state -of-the-art knowledge, technical innovations, assessment methodologies and tools for advancing Advanced Driver Assistance Systems towards the protection of VRUs. The introduction of a new generation safety system in the market will enhance VRU road safety in 2020-2025, contributing to the "Vision Zero" objective of no fatalities or serious injuries in road traffic set out in the Transport White Paper. Furthermore, the test methodologies and tools developed within the project shall be considered for the New Car Assessment Programme (Euro NCAP) future roadmaps, supporting the European Commission goal of halving the road toll in the 2011-2020 timeframe.
The presence and performance of Advanced Driver Assistance Systems (ADAS) has increased over last years. Systems available on the market address also conflicts with vulnerable road users (VRUs) such as pedestrians and cyclists. Within the European project PROSPECT (Horizon2020, funded by the EC) improved VRU ADAS systems are developed and tested. However, before determining systems" properties and starting testing, an up-to-date analysis of VRU crashes was needed in order to derive the most important Use Cases (detailed crash descriptions) the systems should address. Besides the identified Accident Scenarios (basic crash descriptions), this paper describes in short the method of deriving the Use Cases for car-to-cyclist crashes. Method Crashes involving one passenger car and one cyclist were investigated in several European crash databases looking for all injury severity levels (slight, severe and fatal). These data sources included European statistics from CARE, data on national level from Germany, Sweden and Hungary as well as detailed accident information from these three countries using GIDAS, the Volvo Cars Cyclist Accident database and Hungarian in-depth accident data, respectively. The most frequent accident scenarios were studied and Use Cases were derived considering the key aspects of these crash situations (e.g., view orientation of the cyclist and the car driver- manoeuvre intention) and thus, form an appropriate basis for the development of Test Scenarios. Results Latest information on car-to-cyclist crashes in Europe was compiled including details on the related crash configurations, driving directions, outcome in terms of injury severity, accident location, other environmental aspects and driver responsibilities. The majority of car-to-cyclist crashes occurred during daylight and in clear weather conditions. Car-to-cyclist crashes in which the vehicle was traveling straight and the cyclist is moving in line with the traffic were found to result in the greatest number of fatalities. Considering also slightly and seriously injured cyclists led to a different order of crash patterns according to the three considered European countries. Finally the paper introduced the Use Cases derived from the crash data analysis. A total of 29 Use Cases were derived considering the group of seriously or fatally injured cyclists and 35 Use Cases were derived considering the group of slightly, seriously or fatally injured cyclists. The highest ranked Use Case describes the collision between a car turning to the nearside and a cyclist riding on a bicycle lane against the usual driving direction. A unified European dataset on car-to-cyclist crash scenarios is not available as the data available in CARE is limited, hence national datasets had to be used for the study and further work will be required to extrapolate the results to a European level. Due to the large number of Use Cases, the paper shows only highest ranked ones.
A reduction of around 48% of all road fatalities was achieved in Europe in the past years including a reduced number of fatalities with an older age. However, among all road fatalities, the proportion of elderly is steadily increasing. In an ageing society, the European (Horizon2020) project SENIORS aims to improve the safe mobility of older road users, who have different transportation habits compared to other age groups. To increase their level of safe mobility by determining appropriate requirements for vehicle safety systems, the characteristics of current road traffic collisions involving the elderly and the injuries that they sustain need to be understood in detail. Hereby, the paper focuses on their traffic participation as pedestrian, cyclist or passenger car occupant. Following a literature review, several national and international crash databases and hospital statistics have been analysed to determine the body regions most frequently and severely injured, specific injuries sustained and types of crashes involved, always comparing older road users (65 years and more) with mid-aged road users (25-64 years). The most important crash scenarios were highlighted. The data sources included European statistics from CARE, data on national level from Germany, Sweden, Italy, United Kingdom and Spain as well as in-depth crash information from GIDAS (Germany), RAIDS (UK), CIREN and NASS-CDS (US). In addition, familiar hospital data from Germany (TraumaRegister DGU-®), Italy (Italian Register of Acute Traumas) and UK hospital statistics (TARN) were included in the study to gain further insight into specific injury patterns. Comprehensive data analyses were performed showing injury patterns of older road users in crashes. When comparing with mid-aged road users, all databases showed that the thorax body region is of particularly high importance for the older car occupant with injury severities of AIS 2 or AIS 3+, whereas the body regions lower extremities, head and thorax need to be considered for the older pedestrians and cyclists. Besides these comparisons, the most frequent and severe top 5 injuries were highlighted per road user group. Further, the most important crash configurations were identified and injury risk functions are provided per age group and road user group. Although several databases have been analysed, the picture on the road safety situation of older road users in Europe was not complete, as only Western European data was available. The linkage between crash data and hospital data could only be made on a general level as their inclusion criteria were quite different.
Supported by field accident data and monitoring results of European Regulation (EC) No. 78/2009, recent plans of the European Commission regarding a way forward to improve passive safety of vulnerable road users include, amongst other things, an extension of the head test area. The inclusion of passive cyclist safety is also being considered by Euro NCAP. Although passenger car to cyclist collisions are often severe and have a significant share within the accident statistics, cyclists are neither considered sufficiently in the legislative nor in the consumer ratings tests. Therefore, a test procedure to assess the protection potential of vehicle fronts in a collision with cyclists has been developed within a current research project. For this purpose, the existing pedestrian head impact test procedures were modified in order to include boundary conditions relevant for cyclists as the second big group of vulnerable road users. Based on an in-depth analysis of passenger car to cyclist accidents in Germany the three most representative accident constellations have been initially defined. The development of the test procedure itself was based on corresponding simulations with representative vehicle and bicycle models. In addition to different cyclist heights, reaching from a 6-year-old child to a 95%-male, also four pedal positions were considered. By reconstruction of a real accident the defined simulation parameters could be validated in advance. The conducted accident kinematics analysis shows for a large portion of the constellations an increased head impact area, which can reach beyond the roof leading edge, as well as high average values for head impact velocity and angle. Based on the simulation data obtained for the different vehicle models, cyclist-specific test parameters for impactor tests have been derived, which have been further examined in the course of head and leg impact tests. In order to study the cyclist accident kinematics under real test conditions, different full scale tests with a Polar-II dummy positioned on a bicycle have been conducted. Overall, the tests showed a good correlation with the simulations and support the defined boundary test conditions. Typical accident scenarios and simulations reveal higher head impact locations, angles and velocities. An extended head impact area with modified test parameters will contribute to an improved protection of vulnerable road users including cyclists. However, due to significantly differing impact kinematics and postures between the lower extremities of pedestrians and cyclists, these injuries cannot be addressed by the means of current test tools such as the flexible pedestrian legform impactor FlexPLI. Based on the findings obtained within the project as well as the existing pedestrian protection requirements a cyclist protection test procedure for use in legislation and consumer test programmes has been developed, whose requirements have been transferred into a corresponding test specification. This specification provides common head test boundary conditions for pedestrians and cyclists, whereby the existing requirements are modified and two parallel test procedures are avoided.
Test and assessment procedures for passive pedestrian protection based on developments by the European Enhanced Vehicle-safety Committee (EEVC) have been introduced in world-wide regulations and consumer test programmes, with considerable harmonization between these programmes. Nevertheless, latest accident investigations reveal a stagnation of pedestrian fatality numbers on European roads running the risk of not meeting the European Union- goal of halving the number of road fatalities by the year 2020. The branch of external road user safety within the EC-funded research project SENIORS under the HORIZON 2020 framework programme focuses on investigating the benefit of modifications to pedestrian test and assessment procedures and their impactors for vulnerable road users with focus on the elderly. Injury patterns of pedestrians and cyclists derived from the German In-Depth Accident Study (GIDAS) show a trend of AIS 2+ and AIS 3+ injuries getting more relevant for the thorax region in crashes with newer cars (Wisch et al., 2017), while maintaining the relevance for head and lower extremities. Several crash databases from Europe such as GIDAS and the Swedish Traffic Accident Data Acquisition (STRADA) also show that head, thorax and lower extremities are the key affected body regions not only for the average population but in particular for the elderly. Therefore, the SENIORS project is focusing on an improvement of currently available impactors and procedures in terms of biofidelity and injury assessment ability towards a better protection of the affected body regions, incorporating previous results from FP 6 project APROSYS and subsequent studies carried out by BASt. The paper describes the overall methodology to develop revised FE impactor models. Matched human body model and impactor simulations against generic test rigs provide transfer functions that will be used for the derivation of impactor criteria from human injury risk functions for the affected body regions. In a later step, the refined impactors will be validated by simulations against actual vehicle front-ends. Prototyping and adaptation of test and assessment procedures as well as an impact assessment will conclude the work of the project at the final stage. The work will contribute to an improved protection of vulnerable road users focusing on the elderly. The use of advanced human body models to develop applicable assessment criteria for the revised impactors is intended to cope with the paucity of actual biomechanical data focusing on elderly pedestrians. In order to achieve optimized results in the future, the improved test methods need to be implemented within an integrated approach, combining active with passive safety measures. In order to address the developments in road accidents and injury patterns of vulnerable road users, established test and assessment procedures need to be continuously verified and, where needed, to be revised. The demographic change as well as changes in the vehicle fleet, leading to a variation of accident scenarios, injury frequencies and injury patterns of vulnerable road users are addressed by the work provided by the SENIORS project, introducing updated impactors for pedestrian test and assessment procedures.