Präsident
Filtern
Dokumenttyp
Schlagworte
- Germany (10)
- Deutschland (9)
- Accident (6)
- Accident prevention (6)
- Conference (6)
- Safety (6)
- Sicherheit (6)
- Unfall (6)
- Unfallverhütung (6)
- Konferenz (5)
Institut
- Präsident (10)
- Abteilung Fahrzeugtechnik (1)
Enhanced protection of pedestrians and cyclists remains on the focus. Besides infrastructural and behavioral aspects it is necessary to exploit technical solutions placed on motorized vehicles. Accident research needs reliable data as well as national road accident statistics. Changing the view on seriously injured road users is one of the challenges which will substantially contribute to the optimization on future traffic safety. The missing accuracy in the definition of personal injury has a detrimental effect on making cost efficient road safety policy which is not only focused on fatal accidents. The European commission requested that, starting in 2015, all EU member states provide more detailed data on the injury status of road casualties, with special regard to the group of seriously injured. Conventional accident data will always be essential. But to obtain detailed data about driver behavior in real traffic situations further data sources are required. These could be EDR data, data from electronic control units, data from traffic surveys and traffic counting, naturalistic diving studies and field operational tests. Gaining insight into normal as well as critical driver behavior will enable accident researchers to deduct functions estimating the increase or decrease of accident risk associated with certain behaviors or vehicle functions. Also with view to the introduction of highly automated driving functions in the future such data is urgently needed. Computer simulation based tools to estimate the benefits of active safety systems are another step on the way towards the safety assessment of automated driving. It is now the duty of the scientific community to ask the right questions, to develop a methodology and to merge all these data sources into a common framework for the assessment of future traffic safety innovations.
Deutschland besitzt eines der leistungsfähigsten Verkehrssysteme in Europa. Dieses Verkehrssystem stellt die Voraussetzung für eine hohe Mobilität und wirtschaftliche Leistungsfähigkeit dar. Jedoch sind mit dieser funktionierenden Mobilität auch negative Auswirkungen verbunden - hier ist an erster Stelle der Verkehrslärm zu nennen. Im Rahmen nationaler und internationaler Forschungsarbeiten ist es in den letzten Jahren gelungen, die Wirkmechanismen der Lärmentstehung im Zusammenspiel Reifen-Fahrbahn detailliert zu beschreiben und Anforderungen für eine dauerhafte Lärmreduzierung zu formulieren. Die technischen Potenziale der Schallreduktion sind jedoch noch nicht ausgeschöpft.
Topics of this report are: Road construction (highways, interstate roads, urban by-passes, cycle tracks, construction sites, level crossings removal), traffic management systems, road tunnel equipment, harmonisation of vehicle regulations, accident statistics and accident research, passive vehicle safety, active vehicle safety , automotive environmental protection and rescue systems.
Sowohl mit dem 3. Road Safety Action Programme der Europäischen Kommission als auch mit dem deutschen Verkehrssicherheitsprogramm werden die verkehrspolitischen Zielsetzungen zur Erhöhung der Verkehrssicherheit in Europa und Deutschland festgelegt. Hierbei muss die passive Fahrzeugsicherheit auch weiterhin eine bedeutende Rolle übernehmen. Es ist jedoch auch festzustellen, dass durch den zunehmenden Einsatz von Elektronik im Fahrzeug die klassischen Bereiche der aktiven und passiven Fahrzeugsicherheit mehr und mehr ineinander greifen. Der Fortschritt in der Elektronik ermöglicht eine Integration der Systeme der aktiven und passiven Sicherheit. Dadurch lässt sich die Fahrzeugsicherheit weiter steigern. Durch die Vernetzung der Systeme lassen sich sogar Kosten einsparen. Der europäische Regierungsausschuss EEVC (European Enhanced Vehicle-safety Committee), die Verbraucherschutzorganisation Euro NCAP (European New Car Assessment Programme) und die Europäische Kommission mit der eSafety Initiative haben diesen Trend erkannt und entsprechende Aktivitäten eingeleitet.
Topics of this report are: Securing mobility and making mobility sustainable - Strategies for road safety: Safe behavior, Safe vehicles, Safe infrastructure, Telematics, International vehicle-engineering measures " Accident statistics " Accident research " Passive vehicle safety " Active vehicle safety " Driver assistance systems " Environmental protection through vehicle engineering.
Topics of the status report are: Road accidents in Germany " Socio-economic costs due to road traffic accidents in Germany " Vehicle population and road performance " Electromobility " Alternative power train technologies: market penetration and consequences. The following research subjects are presented: Safety of electric vehicles " Driving dynamics of electric propelled vehicles " New requirements for the periodic technical inspection of electric and hybrid vehicles " Forward looking safety systems " Periodic roadworthiness tests " Cooperative systems: integration of existing systems " Safety related traffic information " Urban space: User oriented assistance systems and network management " Automated driving " Study on camera-monitor-systems " Freight transport " BioRID TEG, dummy harmonization " Frontal impact and compatibility " Child safety " FlexPLI " GIDAS: a blueprint for worldwide in-depth road accident investigations " Druid: Driving under the influence of drugs, alcohol and medicines " Smoke and toxicity in bus fires.
Topics of this report are: Road accidents in Germany - Socio-economic costs due to road traffic accidents - Vehicle population and road performance " Automotive IT " Electromobility. The following research subjects are presented: Safety of electric vehicles - Forward looking safety systems - Cooperative systems - Safety related traffic information - Freight transport: Action plan freight transport and trial with longer trucks - Lane departure warning systems and Advanced emergency braking systems (AEBS) for heavy duty vehicles - Dummy harmonization " Compatibility - Child safety - Virtual testing - Driving under the influence of drugs, alcohol and medicines - Fire safety of buses - Milled shoulder rumble strips - Conspicuity of powered-two-wheelers - Automatically dipped high beam and rear view mirrors.
Technical progress in automotive engineering focuses at the moment on two competing branches: improving safety and reducing energy consumption. Recent consideration has been given to a third factor, cost to the consumer. Challenges are presented by demographic changes, especially with increasing participation of elderly people in road traffic. The report considers the recent history of road accidents in Germany and statistics relating to vehicle population and road performance. There is a general trend towards decreasing numbers of accidents and their severity. Transport is responsible for roughly 20% of CO2 emissions and approximately 70% of total petroleum consumption. The Federal Government has responded to these challenges by publishing the Freight Transport and Logistics Masterplan in the summer of 2008. It describes the strategic transport policy direction and the key elements of the future course of action which are to be used to ensure the provision of efficient infrastructure and, at the same time, to reduce the amount of energy consumed by vehicles and make transport more efficient, cleaner and quieter. This document contains a number of concrete measures subsumed under the following six objectives: Making optimum use of transport infrastructure - shaping transport to make it more efficient; Reducing the number of journeys - ensuring mobility; Transferring more traffic to the railways and inland waterways; Upgrading more transport arteries and hubs; Environmentally friendly, climate friendly, quiet and safe transport, and Good working conditions and good training in the freight transport industry. Progress in research is outlined in the following areas: Daytime Running Lights for Motorcycles; Safety of hydrogen vehicles - addressing safety and environmental issues by development of a Global Technical Regulation for hydrogen vehicles; Elements of active vehicle safety for elderly drivers; Periodical Technical Inspection of electronically controlled systems in road vehicles - Electronic Stability Control; Pedestrian protection; Crash Compatibility - role of collision partner in passive safety tests; Child safety; Euro NCAP - Child Restraint Systems, and German Field Operational Test on Car-to-Car and Car-to-Infrastructure Systems (SIM-TD). The research project AKTIV - "Adaptive and Cooperative Technologies for Intelligent Traffic" encompasses the design, development, and evaluation of novel driver assistance systems, knowledge and information technologies and is set up to find solutions for efficient traffic management and Car-to-Car and Car-to-Infrastructure communication for future cooperative vehicle applications. The European Statement of Principles on the Human Machine Interface (HMI), presented at the eSafety Conference, which was held in Berlin on 5/6 June 2007, addresses issues such as Real Time Traffic Information (RTTI), Legal issues of Advanced Driver Assistance Systems (ADAS) and e-security.
There is a need to continue to set the right vehicle safety policy priorities in the future. Research has to point out the most cost efficient and safety relevant measures to further reduce the number of road traffic casualties. The overall development shows that the constant and rapid decrease in the number of road casualties slows down. New innovations need to enter the vehicle market soon, in order to continue the success achieved in the last decade. Priorities for vehicle safety are driven by safety and mobility demands. It is necessary to keep a strong lid on all aspects of elderly and vulnerable road users. The fraction of powered-two-wheelers (PTW) is a priority group. PTWs have a risk of being involved in an accident, 14times higher than that of a passenger car. However, the figures do also show that every second fatality is a car occupant. Therefore passenger car safety remains to be top priority. Heavy goods vehicles are overly represented in fatal accidents, addressing the need to make these vehicles more compatible with other road users. These facts highlight the necessity not only to increase vehicles" self protection, but also to make cars - and trucks - more compatible and safe. Cycling is a strongly increasing mode of transport. This is a further reason to demand better protection for cyclists and pedestrians from car design and car active and integrated safety systems. Another priority for future vehicle safety is related to demographics. It is less known that the purely demographic effect will be superimposed by an increasing wish of elderly people to be mobile. However, elderly people show deficits concerning their biomechanics. This emphasizes the need for better and more adaptive restraint systems, but also further technological challenges and demands for active safety systems. However, in order to progress, current technological limitations have to be overcome. Cost benefit considerations, but also consumer acceptance and desires, will drive this process.