Abteilung Fahrzeugtechnik
Filtern
Erscheinungsjahr
Dokumenttyp
- Konferenzveröffentlichung (97)
- Buch (Monographie) (49)
- Wissenschaftlicher Artikel (45)
- Arbeitspapier (13)
- Teil eines Buches (Kapitel) (5)
Sprache
- Englisch (106)
- Deutsch (101)
- Mehrsprachig (2)
Schlagworte
- Safety (77)
- Sicherheit (76)
- Fahrzeug (57)
- Vehicle (57)
- Bewertung (51)
- Deutschland (46)
- Germany (46)
- Anfahrversuch (45)
- Evaluation (assessment) (45)
- Impact test (veh) (42)
Institut
Neue Herausforderungen an die Unfallforschung durch Fahrerassistenz und automatisiertes Fahren
(2019)
Unfallrekonstruktion hat die Ableitung von Maßnahmen zur Minimierung der Unfallfolgen ermöglicht, vor allem durch Verbesserungen bei passiven Sicherheitseinrichtungen, aber auch durch die Verbesserung der Rettungskette, beispielsweise eCall. Heute können aktive Sicherheitssysteme die Unfallfolgen bereits vor der eigentlichen Kollision reduzieren oder durch Umfeldwahrnehmung und mittels Eingriff in die Fahrzeugsteuerung gegebenenfalls sogar vollständig verhindern. Funktionen, die aktiv in die Fahrzeugsteuerung eingreifen, lassen sich nach ihrer Wirkweise unterscheiden: zum einen handelt es sich um kontinuierlich automatisierende Funktionen, die meist länger aktiv bleiben (zum Beispiel ACC). Zum anderen um Funktionen, die in kritischen Fahrsituationen temporär in die Fahrzeugsteuerung eingreifen. Aufgezeigt wird, welche Konsequenzen und Risiken in Bezug auf diese Systeme sowie für bestimmte (zum Beispiel kritikale) Fahrsituationen anzunehmen sind. Zur Bewertung von aktiven Reglern, die in kritischen Fahrsituationen eingreifen, sind Unfalldaten nur noch eingeschränkt tauglich. Ähnliches gilt für die Bewertung von Ereignissen/ Zuständen im Rahmen kontinuierlicher Fahrzeugsteuerung, vor allem, wenn diese weiter vorausliegen. Wirkzusammenhänge automatisierter Fahrfunktionen müssen jedoch - gerade für den Mischverkehr mit konventionell gesteuerten Fahrzeugen - identifiziert werden. Dafür wird eine Szenariendatenbank mit relevanten Verkehrssituationen benötigt, in die Daten aus Naturalistic Driving Studies (NDS), aus Fahrversuchen oder Versuchen im Fahrsimulator eingehen können. Die zunehmende Durchdringung der Fahrzeugflotte mit kontinuierlich automatisierten Fahrfunktionen lässt eine Abnahme kritischer Fahrsituationen und eine Reduktion der Zahl der Verkehrsopfer erwarten. Allerdings verbleibt eine Restzahl an systemimmanenten Unfällen, die als unvermeidbar gelten müssen.
The term test procedure refers to a method that describes how a system has to be tested to identify and assess specific behavior or properties by experiments. This also includes the specification of required tools, equipment, boundary conditions, and evaluation methods. Test procedures are an essential tool to check whether desired product properties are present, which of course also applies to the development of driver assistance systems. In addition to development and release testing that mainly is performed by the vehicle or system manufacturer, there are tests with the purpose of an independent product testing that are conducted by external test organizations. These tests are needed for vehicle type approval (for admission to a specific market), in the context of applying the standard for functional safety (in both cases mainly executed by technical services (being accredited as certification laboratory)) or for customer information purposes (by a test institute for consumer protection). The focus of this chapter is these "external" test methods. After a taxonomy of test procedures, the differences between legislation (type approval) and consumer testing are highlighted. Typical tests and the associated test setup, tools, and assessment criteria are discussed, and an outlook toward testing in the near and mid-future is given.
The "Autonomous driving on the roads of the future: Villa Ladenburg Project" by the Daimler und Benz-Stiftung looks at degrees of automation that will only become technically feasible in the distant future. The treatment of the legal questions in the present chapter therefore draws heavily on the description of the use cases, which begin to provide a concrete basis for evaluating individual issues. Uncertainties in predicting future technical developments can be expected and will have a commensurate impact on the assumptions and conclusions of this chapter. The resulting uncertainty is nevertheless unavoidable if one wants to press ahead with important interrelated issues. This chapter is therefore intended as a contribution to the debate on societal aspects of automated driving from a legal perspective and not as a legalistic evaluation of the subject. The consideration will largely focus on the situation within the context of current German law. The legal views expressed are those of the author and are based on nine years of experience in the field of driver assistance system research. In terms of the underlying conception presented here, the societal dimension of autonomous vehicles addressed in the present project goes well beyond the adjustments to the legal framework currently being called for in Germany. The following will examine the question of "societal acceptance" in the context of the legal questions raised by autonomous vehicles. This line of investigation is not immediately obvious and covers only a segment of the more thoroughgoing focus of the project.
The term driver assistance systems in the chapter title shall be understood to include vehicle automation. This chapter starts with a homogeneous and consistent classification and nomenclature of all kinds of driver assistance systems known and under discussion today (including vehicle automation). It thereby builds upon familiar classification schemes by the German Federal Highway Research Institute (BASt) and the standardization body SAE international. Detailed evaluation of the German legal situation for driver assistance systems and vehicle automation is provided in the following Sect. 2. In Sect. 3, an overview is given on the legal system in the US to reveal aspects relevant for vehicle automation. This is intended as initial information for those not acquainted to the US legal system which has been the first to regulate automation in several federal states. Finally, in Sect. 4, the current rating scheme of the European New Car Assessment Programme (EuroNCAP) is presented in comparison to legal instruments. The model of a consumer protection based approach proves to be a flexible instrument with great advantages in promoting new technologies. Technical vehicle regulations on the other hand rule minimum requirements. Both approaches are needed to achieve maximum vehicle safety.
Anforderungen, Zielkonflikte
(2019)
Um Sicherheit und Umweltverträglichkeit von Straßen- bzw. Kraftfahrzeugen zu gewährleisten, werden an die Gestaltung der Fahrzeuge technische Anforderungen gestellt. Es gibt Anforderungen durch den Gesetzgeber, die erfüllt werden müssen, um ein Fahrzeug in den Verkehr bringen zu dürfen. Darüber hinaus bestehen herstellerinterne Anforderungen an das Produkt, die über das vom Gesetzgeber geforderte Maß hinausgehen, um den Kundenwünschen und der Firmenphilosophie zu genügen. Und als dritter Punkt stellen auch Verbraucherschutz-Organisationen Kriterien auf, anhand derer sie die Eigenschaften der auf dem Markt befindlichen Fahrzeuge bewerten und die Fahrzeuge eingruppieren, was dann der Kundeninformation dient. Auch diese Anforderungen gehen über die des Gesetzgebers hinaus. Das Setzen der gesetzlichen Mindestanforderungen ist für die Fahrzeugtechnik mittlerweile jedoch nicht mehr einzelnen Staaten überlassen. Vielmehr sind die für die Genehmigung von Fahrzeugtypen einzuhaltenden Bedingungen international harmonisiert: Für die EU sind dies EU-Richtlinien oder EU-Verordnungen, die von der Europäischen Kommission in Brüssel vorgeschlagen werden. Für über die EU hinausgehende Staaten bzw. Regionen sind dies unter anderem Regelungen der UN, erstellt von der UN-Wirtschaftskommission für Europa (UNECE) in Genf.
Ziel des Projektes war es zu ermitteln, ob und wenn ja unter welchen Bedingungen Elektrokleinstfahrzeuge im Straßenverkehr sicher betrieben werden können, welche technischen Anforderungen dafür notwendig sind und welches Konfliktpotential zu anderen Verkehrsteilnehmern zu erwarten ist. Stehend gefahrene (d.h. Fahrzeuge ohne Sitz z.B. Tretroller mit Elektrounterstützung) und selbstbalancierende Elektrokleinstfahrzeuge (z.B. dem Segway ähnliche) konnten bis 2016 nach der Rahmenrichtlinie 2002/24/EG (Typgenehmigungsvorschrift für Krafträder/Kategorie L-Fahrzeuge), die nun außer Kraft ist, genehmigt werden. Die dort genannten Anforderungen wurden durch die Elektrokleinstfahrzeuge größtenteils nicht erfüllt. Seit 2016 gilt die neue Typgenehmigungs-Verordnung (EU) 168/2013 für Krafträder. Nach dieser Verordnung kann die Genehmigung solcher Elektrokleinstfahrzeuge national geregelt werden, da die Verordnung diese definitiv vom Anwendungsbereich ausschließt. Um bei diesen Fahrzeugen national über eine Genehmigungsfähigkeit entscheiden zu können, wird zum einen eine Einschätzung zur Verkehrssicherheit solcher Fahrzeuge benötigt. Zum anderen müssen aus fahrdynamischen Versuchen Erkenntnisse gewonnen werden, um diese Fahrzeuge klassifizieren zu können und um jeweils Anforderungen festlegen zu können. Die BASt hat im Rahmen dieses Forschungsprojektes Vorschläge für eine derartige Klassifizierung von bestimmten Elektrokleinstfahrzeugen und für die zu stellenden technischen Anforderungen an diese Fahrzeuge erarbeitet, um diese Fahrzeuge sicher im Straßenverkehr verwenden zu können. In dem Forschungsprojekt wurden Elektrokleinstfahrzeuge in vier Teilstudien untersucht: Betrachtungen zur aktiven und passiven Sicherheit, zum Nutzerverhalten und zur Risikobewertung sowie zur Verkehrsfläche. Dabei wurde aufgezeigt, dass es möglich ist, neue Kategorien mit bestimmten Mindestanforderungen zu bilden. Es wird empfohlen, diese Anforderungen einzuhalten, sollten Elektrokleinstfahrzeuge zukünftig im öffentlichen Verkehr betrieben werden können und dürfen. Seitens der aktiven Sicherheit wurden mithilfe von fahrdynamischen Versuchen und technischen Untersuchungen Anforderungen erarbeitet, die das verkehrssicherheitstechnische Risiko bestmöglich minimieren. Weiterhin wurden Empfehlungen in Bezug auf die passive Sicherheit von Elektrokleinstfahrzeugen ausgesprochen, die ein Sicherheitsniveau gewährleisteten, das ähnlich zu heutigen bestehenden Fahrzeugen ist. Das subjektive Fahrverhalten zeigte, dass Elektrokleinstfahrzeuge grundsätzlich sicher vom Fahrer kontrollierbar sind, solange bestimmte Systemgrenzen eingehalten werden. Hinsichtlich der Aspekte des Nutzerverhaltens wurden Schutzausrüstung und das Kräfteverhältnis zu anderen Verkehrsteilnehmern bewertet. In Abhängigkeit von den vorgeschlagenen Fahrzeugkategorien werden entsprechende Verkehrsflächen für die Benutzung empfohlen, basierend auf der im öffentlichen Verkehr analysierten subjektiven Sicherheit und basierend auf einer Analyse des Konfliktpotenzials gegenüber anderen Verkehrsteilnehmern. Aus allen Ergebnissen des Projektes wurden Empfehlungen für die Nutzung der Verkehrsflächen sowie Anforderungen an die (sicherheits-) technische Ausstattung für die neu vorgeschlagenen Elektrokleinstfahrzeuge- Kategorien abgeleitet, die jeweils an Anforderungen für die bereits existierenden Fahrzeugkategorien "Leichtmofa" bzw. "Mofa" angelehnt sind.
2011 beauftragte das damalige Bundesministerium für Verkehr, Bau und Stadtentwicklung die BASt mit der wissenschaftlichen Begleitung des bundesweiten Feldversuchs mit Lang-Lkw. Lang-Lkw dürfen mit bis zu 25,25 m zwar um 6,50 m länger als nach den geltenden Regelungen ausgeführt sein; ein höheres Gesamtgewicht als die auch heute schon geltenden 40 t bzw. 44 t im Vor- und Nachlauf zum kombinierten Verkehr ist bei Lang-Lkw hingegen nicht zulässig. Der Versuch startete mit Wirkung vom 01.01.2012 und war auf die Dauer von fünf Jahren ausgelegt. Er ist Bestandteil des Aktionsplans Güterverkehr und Logistik des Bundesministeriums für Verkehr und digitale Infrastruktur. Die gesetzliche Grundlage zur Durchführung des Feldversuchs bildet die vom Bundesminister für Verkehr erlassene Verordnung über Ausnahmen von straßenverkehrsrechtlichen Vorschriften für Fahrzeuge und Fahrzeugkombinationen mit Überlänge, kurz LKWÜberlStVAusnV, vom 19.12.2011 sowie deren zugehörige Änderungs-Verordnungen. Eine der Vorgaben betraf zum Beispiel den auf ein geprüftes Streckennetz beschränkten Einsatz der Lang-Lkw, eine andere die Teilnahme an der wissenschaftlichen Begleitung. Der Zweck der wissenschaftlichen Begleitung bestand unter anderem in einer Versachlichung des Themas "Längere Lkw". Ausgehend von den Argumenten gegen längere und schwerere Lkw aus der Vergangenheit wurden auch gegen die im Feldversuch ausschließlich adressierte Vergrößerung der Länge von Interessenvertretern der Bahn, von Umweltverbänden, aber auch Automobilclubs Bedenken geäußert. Die Kritik betrifft prinzipiell und relativ pauschal folgende drei zentrale Punkte: - Die Verkehrssicherheit würde durch größere und/oder schwerere Lkw gefährdet. - Die Infrastruktur würde durch größere und/oder schwerere Lkw derart beansprucht, dass eine Ertüchtigung und/oder Instandsetzung die Allgemeinheit mit enormen Kosten belasten würde. - Durch die zu erwartende Effizienzsteigerung und damit einhergehenden Kostenvorteile im Straßengüterverkehr würden Transporte von der Schiene auf die Straße verlagert und/oder neue Verkehre auf der Straße induziert, sodass schließlich nicht weniger, sondern mehr Straßengüterverkehr stattfinden würde. Auch der Umstand, dass es sich beim Lang-Lkw um ausschließlich längere, nicht aber schwerere Lkw handelt, hat keine grundlegende Veränderung in der Diskussion gebracht. Ziel der Konzeption der wissenschaftlichen Begleitung war es, alle in der Öffentlichkeit diskutierten Hoffnungen in und Bedenken gegen den Einsatz von Lang-Lkw umfassend zu berücksichtigen. Aufbauend auf einer internationalen Literaturstudie und unter Berücksichtigung der rechtlichen Rahmenbedingungen sowie öffentlichen Diskussion wurden diejenigen Aspekte ermittelt und aufgelistet, die als mögliche Chancen und Risiken für einen Einsatz von Lang-Lkw in den verschiedenen Quellen benannt wurden. Diese Liste wurde im Rahmen eines Expertenkolloquiums im Mai 2011 diskutiert und weiterentwickelt. Zur Beantwortung der identifizierten Fragestellungen wurden mehrere Forschungsprojekte initiiert und im Feldversuchs zum Teil von der BASt selbst, überwiegend jedoch von externen Forschungsinstituten bearbeitet. Der zum Ende des Feldversuchs vorgelegte Abschlussbericht der BASt enthält neben den für die Konzeption der Gesamtuntersuchung erforderlichen rechtlichen Grundlagen und vorliegenden Erkenntnissen aus der Literatur die Zusammenfassungen der verschiedenen Forschungsprojekte aus allen Untersuchungsphasen der wissenschaftlichen Begleitung. Zusammenfassend ist zu konstatieren, dass sich bedeutende Probleme im Feldversuch nicht gezeigt haben. Gemessen an der Vielzahl betrachteter Fragestellungen ist die Anzahl der identifizierten potenziellen Herausforderungen gering. Zudem können die identifizierten Herausforderungen bei der derzeit vorhandenen Anzahl an im Feldversuch beteiligten Lang-Lkw und auch noch unter der Annahme von deutlich höheren als im Rahmen der Untersuchungen zu den Verkehrsnachfragewirkungen prognostizierten Anteilen von Lang-Lkw am Güterverkehrsaufkommen als hinnehmbar oder beherrschbar eingestuft werden. Es kann zudem festgehalten werden, dass der Einsatz des Lang-Lkw eine positive Verkehrsnachfragewirkung bezüglich einer Reduktion von gefahrenen Lkw-Kilometern und dementsprechend auch eine Reduktion von Klimagasen und Luftschadstoffen im Versuch gezeigt hat und zukünftig haben kann. Es zeigte sich bislang, dass Verlagerungseffekte von der Bahn beziehungsweise vom Binnenschiff auf den Lang-Lkw vor allem aufgrund der bestehenden Gewichts-, aber auch der tatsächlichen beziehungsweise im Modell angenommenen Streckenbeschränkungen sehr gering und damit vernachlässigbar sind. Wenngleich deutlich wird, dass der Lang-Lkw nur eine mögliche Teillösung zur Eindämmung des Güterverkehrswachstums und den damit einhergehenden Umweltwirkungen darstellt, ist der Einsatz aus betriebswirtschaftlicher und verkehrsnachfrageseitiger Sicht in bestimmten Bereichen und Einsatzfeldern sinnvoll.
Automated driving will provide many kinds of benefits - some direct and some indirect. The benefits originate at the individual level, from changes in the behaviour of drivers and travellers with regard to driving and mobility, ending up with benefits at the social level via changes in the whole transport system and society, where many of the current planning and operations paradigms are likely to be transformed by automated driving. There may also be disbenefits, particularly at a social level, for example in intensity of travel which could result in additional congestion and increased use of natural resources. There may also be unintended consequences. For example, we do not know the impacts on public transport: driverless vehicles could provide a means to a lower cost service provision, but the availability of automated cars could lead to more car travel at the expense of collective transport.
Motorcycling is a fascinating kind of transportation. While the riders' direct exposure to the environment and the unique driving dynamics are essential to this fascination, they both cause a risk potential which is several times higher than when driving a car. This chapter gives a detailed introduction to the fundamentals of motorcycle dynamics and shows how its peculiarities and limitations place high demands on the layout of dynamics control systems, especially when cornering. The basic principles of dynamic stabilization and directional control are addressed along with four characteristic modes of instability (capsize, wobble, weave, and kickback). Special attention is given to the challenges of braking (brake force distribution, dynamic over-braking, kinematic instability, and brake steer torque induced righting behavior). It is explained how these challenges are addressed by state-of-the-art brake, traction, and suspension control systems in terms of system layout and principles of function. It is illustrated how the integration of additional sensors " essentially roll angle assessment " enhances the cornering performance in all three categories, fostering a trend to higher system integration levels. An outlook on potential future control systems shows exemplarily how the undesired righting behavior when braking in curves can be controlled, e.g., by means of a so-called brake steer torque avoidance mechanism (BSTAM), forming the basis for predictive brake assist (PBA) or even autonomous emergency braking (AEB). Finally, the very limited potential of brake and chassis control to stabilize yaw and roll motion during unbraked cornering accidents is regarded, closing with a promising glance at roll stabilization through a pair of gimbaled gyroscopes.
In line with the new definition introduced by the European Commission (EC), the number of seriously injured road casualties in Germany for 2014 is assessed in this study. The number of MAIS3+ casualties is estimated by two different methodological approaches. The first approach is based on data from the German Inâ€Depth Accident Study (GIDAS), which is closely related to the German Road Traffic Accident Statistics. The second approach is based on data from the German TraumaRegister DGU-® (TRâ€DGU), which includes many more hospitals but not all MAIS3+ injuries.
Established in 1997, the European New Car Assessment Programme (Euro NCAP) provides consumers with a safety performance assessment for the majority of the most popular cars in Europe. Thanks to its rigorous crash tests, Euro NCAP has rapidly become an important driver safety improvement to new cars. After ten years of rating vehicles, Euro NCAP felt that a change was necessary to stay in tune with rapidly emerging driver assistance and crash avoidance systems and to respond to shifting priorities in road safety. A new overall rating system was introduced that combines the most important aspects of vehicle safety under a single star rating. The overall rating system has allowed Euro NCAP to continue to push for better fitment and higher performance for vehicles sold on the European market. In the coming years, the safety rating is expected to play an important role in the support of the roll-out of highly automated vehicles.
Estimation of the effects of new emission standards on motorcycle emissions by means of modeling
(2016)
Road traffic is, in addition to the energy sector and the industry, one main source of air pollution and carbon dioxide emissions. Although most countries and manufacturers agreed to environmental regulations to reduce the pollutant emissions, particularly in urban areas with high traffic density, the impact of road traffic emissions on the environment and human health has been growing in importance steadily. Due to stricter emission standards and the binding use of emission-reducing systems (e.g. three-way catalyst) hydrocarbon emissions from passenger cars have been reduced significantly since the last two decades. Unlike to passenger cars the emissions standards of powered two-wheelers have not been adjusted since 2006 although their share of hydrocarbon emissions to the total amount of hydrocarbon emissions of road traffic is estimated to be disproportionately high. Due to the new regulation (EU) No. 168/2013 powered two-wheelers have to fulfill new emission standards from 2016 (Euro 4) and 2020 (Euro 5) onwards. Besides new limits for the tailpipe emissions the evaporative emissions are regulated separately for the first time, as they make up a high proportion to the total hydrocarbon emissions in this vehicle class. In this context, the calculation and forecast of road traffic emissions is an important tool to verify compliance of climate targets and to assess the reduction potential of emission-reducing systems. For that purpose the Federal Highway Research Institute (BASt) uses the emission- and calculation tool TREMOD (Transport Emission Model) which provides baseline data and calculated results for pollutants in almost every differentiation e.g. vehicle category, traffic situation and road type. Moreover, estimations of future emission trends, stock information and mileage distribution can be made. The main objective is to illustrate the impact of the upcoming emission standards Euro 4 and Euro 5 on the operational hydrocarbon emissions of powered two-wheelers based on statistical estimations. The significant aspect is to generate scenarios to show the reduction potential of hydrocarbon emissions of powered two-wheelers, differentiated into motorcycles and small motorcycles, in relation to the total share of hydrocarbon emissions in this vehicle class and to the total hydrocarbon emissions from road traffic. As a part of their research, the authors can make initial statements about the possible effect of the new emission standards of regulation (EU) No. 168/2013 by means of modeling with TREMOD.
There is considerable evidence for the negative effects of driver distraction on road safety. In many experimental studies, drivers have been primarily viewed as passive receivers of distraction. Thus, there is a lack of research on the mediating role of their self-regulatory behavior. The aim of the current study was to compare drivers' performance when engaged in a system-paced secondary task with a self-paced version of this task and how both differed from baseline driving performance without distraction. Thirty-nine participants drove in a simulator while performing a secondary visual"manual task. One group of drivers had to work on this task in predefined situations under time pressure, whereas the other group was free to decide when to work on the secondary task (self-regulation group). Drivers' performance (e.g., lateral and longitudinal control, brake reaction times) was also compared with a baseline condition without any secondary task. For the system-paced secondary task, distraction was associated with high decrements in driving performance (especially in keeping the lateral position). No effects were found for the number of collisions, probably because of the lower driving speeds while distracted (compensatory behavior). For the self-regulation group, only small impairments in driving performance were found. Drivers engaged less in the secondary task during foreseeable demanding or critical driving situations. Overall, drivers in the self-regulation group were able to anticipate the demands of different traffic situations and to adapt their engagement in the secondary task, so that only small impairments in driving performance occurred. Because in real traffic drivers are mostly free to decide when to engage in secondary tasks, it can be concluded that self-regulation should be considered in driver distraction research to ensure ecological validity.
Die Kommunikation zwischen Fahrzeugen und Infrastrukturkomponenten steht vor der Einführung in Europa. Dieser Beitrag stellt zunächst die grundlegende Technologie zum Austausch von Nachrichten und ein Pilotprojekt vor, innerhalb dessen eine sichere Fahrzeug-zu-Infrastruktur Kommunikation konzipiert und praktisch erprobt wird. Darauf aufbauend werden Sicherheitsfragestellungen von Infrastrukturkomponenten beleuchtet und ein Einblick in das Schlüsselmanagement sowohl für Fahrzeuge als auch Infrastrukturkomponenten gegeben.
Except for corrective steering functions automatic steering is up to now only allowed at speeds up to 10 km/h according to UN Regulation No. 79. Progress in automotive engineering with regard to driver assistance systems and automation of driving tasks is that far that it would be technically feasible to realise automatically commanded steering functions also at higher vehicle speeds. Besides improvements in terms of comfort these automated systems are expected to contribute to road traffic safety as well. However, this safety potential will only be exhausted if automated steering systems are properly designed. Especially possible new risks due to automated steering have to be addressed and reduced to a minimum. For these reasons work is currently ongoing on UNECE level with the aim to amend the regulation dealing with provisions concerning the approval of steering equipment. It is the aim to revise requirements for automatically commanded steering functions (ACSF) so that they can be approved also for higher speeds if certain performance requirements are fulfilled. The paper at hand describes the derivation of reasonable system specifications from an analysis of relevant driving situations with an automated steering system. Needs are explained with regard to covering normal driving, sudden unexpected critical events, transition to manual driving, driver availability and manoeuvres to reach a state of minimal risk. These issues form the basis for the development of test procedures for automated steering to be implemented in international regulations. This holds for system functionalities like automatic lane keeping or automatic lane change as well as for addressing transition situations in which the system has to hand over steering to the driver or addressing emergency situations in which the system has to react instead of the driver.
One main objective of the EU-Project SENIORS is to provide improved methods to assess thoracic injury risk to elderly occupants. In contribution to this task paired simulations with a THOR dummy model and human body model will be used to develop improved thoracic injury risk functions. The simulation results can provide data for injury criteria development in chest loading conditions that are underrepresented in PMHS test data sets that currently proposed risk functions are based on. To support this approach a new simplified generic but representative sled test fixture and CAE model for testing and simulation were developed. The parameter definition and evaluation of this sled test fixture and model is presented in this paper. The justification and definition of requirements for this test set-up was based on experience from earlier studies. Simple test fixtures like the gold standard sled fixture are easy to build and also to model in CAE, but provide too severe belt-only loading. On the other hand a vehicle buck including production components like airbag and seat is more representative, but difficult to model and to be replicated at a different laboratory. Furthermore some components might not be available for physical tests at later stage. The basis of the SENIORS generic sled test set-up is the gold standard fixture with a cable seat back and foot rest. No knee restraint was used. The seat pan design was modified including a seat ramp. The three-point belt system had a generic adjustable load limiter. A pre-inflated driver airbag assembly was developed for the test fixture. Results of THOR test and simulations in different configurations will be presented. The configurations include different deceleration pulses. Further parameter variations are related to the restraint system including belt geometry and load limiter levels. Additionally different settings of the generic airbag were evaluated. The test set-up was evaluated and optimized in tests with the THOR-M dummy in different test configurations. Belt restraint parameters like D-ring position and load limiter setting were modified to provide moderate chest loading to the occupant. This resulted in dummy readings more representative of the loading in a contemporary vehicle than most available PMHS sled tests reported in the literature. However, to achieve a loading configuration that exposes the occupant to even less severe loading comparable to modern vehicle restraints it might be necessary to further modify the test set-up. The new generic sled test set-up and a corresponding CAE model were developed and applied in tests and simulations with THOR. Within the SENIORS project with this test set-up also volunteer and PMHS as well as HBM simulations are performed, which will be reported in other publications. The test environment can contribute in future studies to the assessment of existing and new frontal impact dummies as well as dummy improvements and related instrumentation. The test set-up and model could also serve as a new standard test environment for PMHS and volunteer tests as well as HBM simulations.
The levels of continuous vehicle automation have become common knowledge. They facilitate overall understanding of the issue. Yet, continuous vehicle automation described therein does not cover "automated driving" as a whole: Functions intervening temporarily in accident-prone situations can obviously not be classified by means of continuous levels. Continuous automation describes the shift in workload from purely human driven vehicles to full automation. Duties of the driver are assigned to the machine as automation levels rise. Emergency braking, e.g., is obviously discontinuous and intensive automation. It cannot be classified under this regime. The resulting absence of visibility of these important functions cannot satisfy " especially in the light of effect they take on traffic safety. Therefore, in order to reach a full picture of vehicle automation, a comprehensive approach is proposed that can map out different characteristics as "Principle of Operation" at top level. On this basis informing and warning functions as well as functions intervening only temporarily in near-accident situations can be described. To reach a complete picture, levels for the discontinuous, temporarily intervening functions are proposed " meant to be the counterpart of the continuous levels already in place. This results in a detailed and independent classification for accident-prone situations. This finally provides for the visibility these important functions deserve.
PROSPECT (Proactive Safety for Pedestrians and Cyclists) is a collaborative research project involving most of the relevant partners from the automotive industry (including important active safety vehicle manufacturers and tier-1 suppliers) as well as academia and independent test labs, funded by the European Commission in the Horizon 2020 research program. PROSPECT's primary goal is the development of novel active safety functions, to be finally demonstrated to the public in three prototype vehicles. A sound benefit assessment of the prototype vehicle's functionality requires a broad testing methodology which goes beyond what has currently been used. Since PROSPECT functions are developed to prevent accidents in intersections, a key aspect of the test methodology is the reproduction of natural driving styles on the test track with driving robots. For this task, data from a real driving study with subjects in a suburb of Munich, Germany was used. Further data from Barcelona will be available soon. The data suggests that intersection crossing can be broken down into five phases, two phases with straight deceleration / acceleration, one phase with constant radius and speed turning, and two phases where the bend is imitated or ended. In these latter phases, drivers mostly combine lateral and longitudinal accelerations and drive what is called a clothoid, a curve with curvature proportional to distance travelled, in order to change lateral acceleration smoothly rather than abrupt. The data suggests that the main parameter of the clothoid, the ratio distance travelled to curvature, is mostly constant during the intersections. This parameter together with decelerations and speeds allows the generation of synthetic robot program files for a reproduction of natural driving styles using robots, allowing a much greater reproducibility than what is possible with human test drivers. First tests show that in principle it is possible to use the driving robots for vehicle control in that manner; a challenge currently is the control performance of the robot system in terms of speed control, but it is anticipated that this problem will be solved soon. Further elements of the PROSPECT test methodology are a standard intersection marking to be implemented on the test track which allows the efficient testing of all PROSPECT test cases, standard mobile and light obstruction elements for quick reproduction of obstructions of view, and a concept for tests in realistic surroundings. First tests using the PROSPECT test methodology will be conducted over the summer 2017, and final tests of the prototype vehicles developed within PROSPECT will be conducted in early 2018
The UN Regulation No. 79 is going to be amended to allow automatically commanded steering functions (ACSF) at speeds above 10 km/h. Hence, requirements concerning the approval of automatically performed steering manoeuvres have to be set in order to allow safe use of automatic steering on public roads as well as improve overall road safety for the driver and the surroundings. By order of the German Federal Ministry of Transport and Digital Infrastructure (BMVI), BASt developed and verified physical test procedures for automatic steering to be implemented in UN Regulation No. 79. The usability of currently available test tools was examined. The paper at hand describes these test procedures and presents results from verification tests. The designated tests are divided in three sections: functionality tests, verifications for the transition of control and emergency tests. System functionality tests are auto matic lane keeping, automatic lane change and an automatic abort of an initiated lane change due to traffic. Those tests check if the vehicle remains in its lane (under normal operating conditions), is able to perform safe automatic lane change manoeuvres and if it considers other road users during its manoeuvres. Transition tests examine the vehicle's behaviour when the driver fails to monitor the system and in situations when the system has to hand over the steering control back to the driver. For instance these tests provoke driver-in-the-loop requests by approaching system boundary limitations, like missing lane markings, surpassing maximum lateral acceleration in a bend or even a major system failure. Even further the driver and his inputs are monitored and if the system detects that he is overriding system actions or contrary want to quit the driving task and unfastens the seat belt, it has to shut down and put the human back into manually control and the responsibility of driving. The last series of test consists of two emergency situations in which the system has to react to a time critical event: A hard decelerating vehicle and a stationary vehicle in front both with no lane change possibility for the ACSF vehicle. Some of the tests, especially the emergency manoeuvres, require special target vehicles and propulsion systems. Since no fully automatic steering vehicles are available, a current Mercedes E-Class with Mercedes' "drive pilot" system was used. It was shown that the vehicle is automatically able to brake to a full stop towards a static Euro NCAP target from partial-automatic driving at 90 km/h, that it could brake towards a rapidly decelerating lead vehicle when travelling at 70 km/h, that it was able during partially automatic driving to remain in its lane in normal operation conditions and to perform a automatic (driver initiated) lane change while surveilling the driver- activities.
Die Level kontinuierlicher Fahrzeugautomatisierung sind unter Fahrerassistenzexperten weithin bekannt und erleichtern das Verständnis. Sie können aber nicht Fahrzeugautomatisierung insgesamt zufriedenstellend beschreiben: Insbesondere temporär intervenierende Funktionen, die in unfallnahen Situationen eingreifen, können offensichtlich nicht nach dem Level kontinuierlicher Fahrzeugautomatisierung beschrieben werden. Diese beschreiben nämlich die zunehmende Aufgabenverlagerung vom Fahrer zur maschinellen Steuerung bei zunehmendem Automatisierungsgrad. Notbremsfunktionen, beispielsweise, sind offensichtlich diskontinuierlich und nehmen zugleich auf intensive Weise Einfluss auf die Fahrzeugsteuerung. Sie lassen sich gerade nicht sinnvoll nach dem Level kontinuierlicher Fahrzeugautomatisierung beschreiben. Das Ergebnis kann indes nicht zufriedenstellen: Die fehlende Sichtbarkeit dieser Funktionen wird ihrer Bedeutung für die Verkehrssicherheit nicht gerecht. Daher wird hier, um ein vollständiges Bild der Fahrzeugautomatisierung zu erlangen, ein umfassender Ansatz zur Beschreibung verfolgt, der auf oberster Ebene nach Wirkweise unterscheidet. Auf dieser Basis lassen sich sowohl informierende und warnende Funktionen als auch solche, die nur temporär in unfallgeneigten Situationen intervenieren, im Detail beschreiben. Das ermöglicht es, eine eigenständige Klassifikation für unfallgeneigte Situationen zu erstellen. Dies kann für diese wichtigen Funktionen die eigenständige Sichtbarkeit herstellen, die ihrer Bedeutung gerecht wird.
Europe has benefited from a decreasing number of road traffic fatalities. However, the proportion of older road users increases steadily. In an ageing society, the SENIORS project aims to improve the safe mobility of older road users by determining appropriate requirements towards passive vehicle safety systems. Therefore, the characteristics of road traffic crashes involving the elderly people need to be understood. This paper focuses on car occupants and pedestrians or cyclists in crashes with modern passenger cars. Ten crash databases and four hospital statistics from Europe have been analysed to answer the questions on which body regions are most frequently and severely injured in the elderly, and specific injuries sustained by always comparing older (65 years and above) with midâ€aged road users (25â€64 years). It was found that the body region thorax is of particularly high importance for the older car occupant with injury severities of AIS2 or AIS3+, where as the lower extremities, head and the thorax need to be considered for older pedestrians and cyclists. Further, injury risk functions were provided. The hospital data analysis showed less difference between the age groups. The linkage between crash and hospital data could only be made on a general level as their inclusion criteria were quite different.
Schutz von schwächeren Verkehrsteilnehmern: kommende Anforderungen aus Gesetzgebung und Euro NCAP
(2017)
Systeme der aktiven Fahrzeugsicherheit, insbesondere Notbremsassistenzsysteme und automatische Notbremssysteme, haben in den letzten zwei Dekaden große technische Fortschritte gemacht, und das im Wesentlichen ohne "Druck" von Gesetzgeber oder unabhängigen Testorganisationen " diese können aber durch passende Anforderungen den Vormarsch der Systeme in die Breite und die Ausnutzung von ansonsten für den Hersteller vielleicht nicht wirtschaftlichen Potentialen unterstützen. Dieser Bericht hat das Ziel, einen Überblick über die kommenden Anforderungen an Schutzsysteme für schwächere Verkehrsteilnehmer zu geben und diese Anforderungen in den Kontext Euro NCAP (=welchen Einfluss haben diese Anforderungen auf die Gesamtbewertung?) sowie Gesetzgebung (schwächere Anforderungen, aber dafür ein Markteintrittskriterium) zu stellen: - Anforderungen und Testprozeduren für Notbremsassistenz Fahrradunfälle 2018 und 2020 in Euro NCAP; - Anforderungen und Testprozeduren für Notbremsassistenz bei Nachtunfällen mit Fußgängern in Euro NCAP 2018; - Anforderungen und Testprozeduren für Abbiegeassistenzsysteme zum Schutz von Radfahrern in Unfallsituationen mit rechtsabbiegenden Lkw innerhalb der Fahrzeugtypgenehmigung.
Accidents between right turning trucks and straight driving cyclists often show massive consequences. Accident severity in terms of seriously or fatally injured cyclists that are involved is much higher than in accidents of other traffic participants in other situations. It seems clear that adding additional mirrors will very likely not improve the situation. At ESV 2015, a methodology to derive test procedures and first test cases as well as requirements for a driver assist system to address blind spot accidents has been presented. However, it was unclear if and how testing of these cases is feasible, to what extent characteristics of different truck concepts (e.g. articulated vehicles, rigid vehicles) influence the test conduction and outcome, and what tolerances should be selected for the different variables. This work is important for the acceptance of a draft regulation in the UN working group on general safety. In the meantime, three test series using a single tractor vehicle, a tractor-semitrailer combination and a rigid vehicle have been conducted. The test tools (e.g. surrogate devices) have been refined. A fully crashable, commercially available bicycle dummy has been tested. If used correct, this dummy does follow a straight line quite precisely and it does not cause any damage to the truck under test in case of accidental impact. The dummy specifications are freely available. During testing, the different vehicle categories resulted in different trajectories being driven. Articulated vehicle combinations did first execute a turn into the opposite direction, and on the other hand, single tractor vehicles did behave comparable to passenger cars. A possible solution to take these behaviors into account is to require the vehicles to drive through a corridor that is narrow for a precise straight-driving phase and extends during the turn. Other investigated parameters are the dummy and vehicle speed tolerances. The results from this research make it possible to draft a regulation for a driver assistance system that helps to avoid blind spot accidents: test cases have been refined, their feasibility has been checked, and corridors for the vehicles and for important parameters (e.g. test speeds) have been set. The test procedure is applicable to all types of heavy goods vehicles. In combination with the accidentology (ESV 2015 paper), the work provides the basis for a regulation for such an assistance system.
Advancing active safety towards the protection of vulnerable road users: the PROSPECT project
(2017)
Accidents involving Vulnerable Road Users (VRU) are still a very significant issue for road safety. According to the World Health Organisation, pedestrian and cyclist deaths account for more than 25% of all road traffic deaths worldwide. Autonomous Emergency Braking Systems have the potential to improve safety for these VRU groups. The PROSPECT project (Proactive Safety for Pedestrians and Cyclists) aims to significantly improve the effectiveness of active VRU safety systems compared to those currently on the market by expanding the scope of scenarios addressed by the systems and improving the overall system performance. The project pursues an integrated approach: Newest available accident data combined with naturalistic observations and HMI guidelines represent key inputs for the system specifications, which form the basis for the system development. For system development, two main aspects are considered: advanced sensor processing with situation analysis, and intervention strategies including braking and steering. All these concepts are implemented in several vehicle prototypes. Special emphasis is put on balancing system performance in critical scenarios and avoiding undesired system activations. For system validation, testing in realistic scenarios will be done. Results will allow the performance assessment of the developed concepts and a cost-benefit analysis. The findings within the PROSPECT project will contribute to the generation of state -of-the-art knowledge, technical innovations, assessment methodologies and tools for advancing Advanced Driver Assistance Systems towards the protection of VRUs. The introduction of a new generation safety system in the market will enhance VRU road safety in 2020-2025, contributing to the "Vision Zero" objective of no fatalities or serious injuries in road traffic set out in the Transport White Paper. Furthermore, the test methodologies and tools developed within the project shall be considered for the New Car Assessment Programme (Euro NCAP) future roadmaps, supporting the European Commission goal of halving the road toll in the 2011-2020 timeframe.
Für eine Reihe von EU Regelungen im Bereich Fahrzeugsicherheit erlaubt eine Verordnung bereits seit dem Jahr 2010 virtuelles Testen für die Typzulassungsprüfung. Technische Details bzw. konkrete Prozeduren für spezifische Regelungen sind in dieser Verordnung jedoch nicht enthalten. Das Hauptziel des europäischen Projekts IMVITER (lmplementation of Virtual Testing in Safety Regulations) war es, basierend auf der neuen Verordnung ein virtuelles Testverfahren auszuarbeiten und dabei offene Fragen zu berücksichtigen. Um die im Projekt-Konsortium unter Berücksichtigung der Anliegen aller Interessensgruppen wie Autohersteller, Zulassungsbehörden und technischer Dienste erarbeiteten offenen Punkte zu adressieren, wurde ein generisches Flussdiagramm entwickelt, das den Ablauf einer virtuell basierten Typprüfung darstellt. ln diesem Diagramm ist der virtuelle Typgenehmigungsprozess in drei aufeinander folgende Phasen aufgeteilt, die Verifikations-, Validierungs- und Typgenehmigungsphase. Von entscheidender Bedeutung ist die Phase der Validierung des Simulationsmodells, für die im IMVITER-Projekt eine Methodik vorgeschlagen wurde. Mit der im Projekt vorgeschlagenen Validierungsmethode ist kein Austausch des Simulationsmodells zwischen Fahrzeughersteller und technischem Dienst notwendig, so dass die Vertraulichkeit von Betriebsgeheimnissen nicht gefährdet ist. Zur Validierung des Modells werden jedoch immer Versuche notwendig sein. Dies gilt sowohl für die Überpruefung von passiven als auch aktiven Fahrzeugsicherheitssystemen. Eine zusammenfassende Betrachtung der Erfahrungen aus dem IMVITER-Projekt ergab, dass mit der Einführung von virtuellem Testen keine Erhöhung der Anforderungen an die Fahrzeugsicherheit bzgl. bestehender Regelungen verbunden sein sollte. Jedoch werden auch weiterhin neue zusäztliche Regelungen erforderlich sein, da sich das Unfallgeschehen und die Fahrzeugtechnologie weiterentwickeln und ändern werden. Diese sollten von Beginn an die Möglichkeiten des virtuellen Testens nutzen, insbesondere bei Testverfahren für neue Technologien, z.B. aktiver Fahrzeugsicherheitssysteme. Hier bieten virtuelle Testverfahren nicht nur eine Kosten- oder Zeitersparnis, sondern ermöglichen teilweise erst die sinnvolle Abprüfung von neuen Sicherheitssystemen, die mit aktuellen auf Hardware-Test basierenden Verfahren überhaupt nicht möglich wären.