1st International Conference on ESAR
Filtern
The need for improved EU level accident information and data was identified in the EU White Paper on Transport Policy (2001)1 and detailed in the Road Safety Action Plan (2003)2. The plan specifies that the EC will develop a road safety observatory to coordinate data collection within an integrated framework.
This study is aimed to investigate the correlations of impact conditions and dynamic responses with the injuries and injury severity of child pedestrians by accident reconstruction. For this purpose, the pedestrian accident cases were selected from Sweden and Germany with detailed information about injuries, accident cars, and accident environment. The selected accident cases were reconstructed using mathematical models of pedestrian and passenger car. The pedestrian models were generated based on the height, weight, and age of the pedestrian involved in accidents. The car models were built up based on the corresponding accident car. The impact speeds in simulations were defined based on the reported data. The calculated physical quantities were analyzed to find the correlation with injury outcomes registered in the accident database. The reconstruction approaches are discussed in terms of data collection, estimating vehicle impact speeds, pedestrian moving speeds and initial posture, secondary ground impact, validity of the mathematical models, as well as impact biomechanics.
The data situation for quantifying the proportion of accidents avoided by the introduction of active safety systems is incomplete, since there is generally no data available on the accidents avoided by the technology in question. In this paper, a split-register approach is suggested and compared with the classical case-control approach known from epidemiologic applications. Provided a set of assumptions hold, which can reasonably be made in such data situations, the split register approach allows inferences on the population accident risk. For both approaches the benefits of basing the analysis on the results of a logistic regression to adjust for confounding factors are outlined. The biasing effects of violating key assumptions are discussed and the split-register approach is demonstrated using the example of the active safety system ESP with data from the German in-depth accident study GIDAS.
Active safety systems are aimed at accident prevention, hence the knowledge required for their development is different from that required for passive safety systems aimed at injury prevention. Particularly, knowledge about accident causation is required. When looking at existing accident causation data, it is argued it fails to explain in sufficient detail how and why the accidents occur. Therefore, there is a need for detailed micro-level descriptions of accident causation mechanisms, and also of methodologies suitable for creating such descriptions. One study addressing these needs is the Swedish project FICA (Factors Influencing the Causation of Accidents and Incidents), where an accident investigation methodology suitable for active safety is developed, and in-depth accident investigations following this methodology are carried out on-scene in the area of Gothenburg by a multidisciplinary team. A preliminary aggregated analysis of different cases shows that the methodology developed is adequate for pointing out common contributing factors and devising principal countermeasures.
Electronic Stability Program (ESP) aims to prevent the lateral instability of a vehicle. Linked to the braking and powertrain systems, it prevents the car from running wide on a corner or the rear from sliding out. It also helps the driver control his trajectory, without replacing him, in the case of loss of control where the driver is performing an emergency manoeuvrer (confused and exaggerated steering wheel actions). A new ESP function optimizes ESP action in curves with hard under steering (situations in which the front wheels lose grip and the vehicle slides towards the outside of the curve). A complementary feature prevents the wheels from spinning when pulling away and accelerating. The name given to the ESP system varies according to the vehicle manufacturer, but other terms include: active stability control (ASC), automotive stability management system (ASMS), dynamic stability control (DSC), vehicle dynamic control (VDC), vehicle stability control (VSC) or electronic stability Control (ESC). This paper proposes an evaluation of the effectiveness of ESP in terms of reduction of injur accidents in France. The method consists of 3 steps: - The identification, in the French National injury accident census (Gendarmerie Nationale only), of accident-involved cars for which the determination of whether or not the car was fitted with ESP is possible. A sample of 1 356 cars involved in injury accidents occurred in 2000, 2001, 2002 and 2003 was then selected. But we had to restrict the analysis to only 588 Renault Lagunas. - The identification of accident situations for which we can determine whether or not ESP is pertinent (for example ESP is pertinent for loss of control accidents whilst it is not for cars pulling out of a junction). - The calculation, via a logistic regression, of the relative risk of being involved in an ESPpertinent accident for ESP equipped cars versus unequipped cars, divided by the relative risk of being involved in a non ESP-pertinent accident for ESP equipped cars versus unequipped cars. This relative risk is assumed to be the best estimator of ESP effectiveness. The arguments for such a method, effectiveness indicator and implicit hypothesis are presented and discussed in the paper. Based on a few assumptions, ESP is proved to be highly effective. Currently, the relative risk of being involved in an ESP pertinent accident for ESP-equipped cars is lower (-44%, although not statistically significant)rnthan for other cars.rn
The so-called "seat-belt injuries" or "seat-belt syndromes", described as 2-point seat-belt injuries, contain heavy inflection injuries of the lumbal spinal column, combined with heavy abdominal injuries as rupture of the upper intestinal bold or heavy injuries of the upper entrails. With "playing" children in the font of the car, with inappropriate plant of 3-point belts, identical injuries can occur.
Rollover scenarios in Europe
(2005)
Rollover accidents seem to be a rising problem in Europe and therefore the systematic of this accident scenario should be investigated. Based on statistical investigations on major European accident databases for different countries a series of 73 real world rollover accidents was analysed. These cases were reconstructed using PC-Crash and preliminary categorised using a modified USbased rollover classification. In a first step, the rollover events were reconstructed from the point of conflict to the vehicle- rest position. The vehicles kinematics as well as its linear and rotational velocities were derived. In a second step typical velocity characteristics as well as kinematics were identified and the events categorised according to these criteria. Based on these results four main categories were defined, covering all reconstructed accidents. This categorisation was based on mechanical parameters (rotatory and translator kinematical data of the vehicle). Significant differences can be seen for different scenarios for the "first phase of rollover".
This paper describes the methodology of In-Depth Investigation in Germany on the example of GIDAS (German In-Depth Accident Study). Since 1999 in Germany a joint project between FAT (Forschungsvereinigung Automobiltechnik or Automotive Industry Research Association) and BASt (Bundesanstalt für Straßenwesen or the Federal Road Research Institute) is being carried out in Hannover and Dresden. The methodology of this project is based on a statistically orientated procedure of data sampling (sampling plan, weighting factors). The paper describes the possibilities of such in-depth investigation on the results of the offered title. The accident cases were collected randomly within GIDAS at Hannover. There are more cases existing from previous investigation started in 1985 under the same methodology. The portion of rollovers can be established at 3.7% of all accidents with casualties in the year 2000. For the study 434 cases of car accidents with rollovers are used for a detail comprehensive analysis. The accidents happened in the years 1994 to 2000 in the Hannover area. The injury distribution will report about 741 occupants with rollover accident event. The presented paper will give an overview of the accident situations following in rollover movements of cars. The distributions of injury frequencies, injury severity AIS for the whole body and for the body regions of occupants will be presented and compared to technical details like the impact speed and the deformation pattern. The speed of the car was determined at the point of rollover and on the point of accident initiency. The characteristics of the kinematics followed in a rollover movement are analyzed and the major defined types of rollover will be shown in the paper. The paper will describe the possibilities of In-Depth Investigation methods for the approach of finding countermeasures on the example of car accidents with rollover and explaining the biomechanics of injuries in rollover movements.
This paper set out to examine the possibilities for injury avoidance implications for older drivers in crashes, based on crash and injury patterns among older drivers and current trends in ageing in most western societies. A number of safety technologies were identified and discussed which have potential for improving vehicle older driver crash avoidance and crashworthiness. While there were some promising estimates available of the likely benefits of this technology for improving safety, it is evident that they need to be confirmed for older drivers, given their age-related disabilities and sensory limitations. Further research is urgently required to ensure that these technologies yield safety benefits without any disbenefits for older drivers.rn
Nowadays airbags are part of the standard equipment in almost all new cars. While airbags are saving an increasing number of people from severe injuries and death in moderate and high speed crashes, they do not completely prevent dashboard injuries. The most common mechanism in dashboard injuries is a posteriorly directed force to the proximal tibia with the knee flexed. This may occur during a motor vehicle frontal impact accident when a knee of the driver or the front-seat passenger strikes the dashboard. The posterior force can be combined with a abducting or rotational force leading to concomitant lateral or posterolateral injury. Car and airbag manufacturers therefore develop special inflatable systems to reduce the impact force in dashboard injuries. Every new inflatable system, however, has to be evaluated in out of position situations in which the system might cause injuries to certain body areas. Therefore, we investigated a new kneebag system in different critical seating positions of post mortem test subjects (PMTS). The tested knee airbag module is a folded airbag (18 litre volume) which is installed below the lower section of the instrument panel of a passenger car. Using four PMTS (2 male, 2 female, age 36"67) the following positions were tested: normal seating position, knee flexed >90 degrees and knee flexed <60 degrees in static deployment tests with direct contact. In addition a dynamic test (48.8kph, AAMA-pulse) was carried out with the PMTS belted in a normal seating position. The inflation phase and the impact of the system on the knee/lower leg were analysed by high speed videos. After the test the lower legs of the PMTS were examined by Xray and autopsy. All soft tissue injuries and bone fractures were recorded. All the tests could be evaluated. Except some superficial skin lesions in the impact area no fracture of the bones around the knee and no knee ligament and tendon injuries were observed. Neither video analysis nor autopsy of the PMTS showed any critical contact injuries caused by the inflation process of the bag. Therefore, it can be concluded that in the tested seating positions which are the most critical for the knee area the knee bag system is safe.
This paper reviews briefly the evolution of the investigation of transport accidents from the early beginnings when individual events were studied but systematic data was not collected. In the transport modes other than on the roads, accident investigation early on, even of single events, was important in introducing safety improvements. Road accidents, however, evolved enormously with the growth of car ownership without any comparable political response to the consequent deaths and injuries, equivalent to what happened with the other modes. From the 1950s data bases started to contribute to our knowledge of the epidemiology of road traffic injuries, and in-depth sample studies have contributed much to the body of knowledge in the last 30 years. However, even the basic input and output variables of a crash, its severity and the seriousness of the outcomes in terms of injuries and their consequences are not complete or agreed upon. Issues of experimental design and sampling are discussed. It is proposed that the most important area for current research to address is the effect of population variations on injury outcomes. The need for the establishment of good data bases for active safety issues is emphasised with the consequent need for better links between the research community and the police.
Traffic accidents were ranked the third among the major causes of death in Thailand. About 13,438 deaths and the death rate from traffic accident was 21.5 per 100,000 of population in 2002. The deaths and death rate varied upon the economic situation. After the economic crisis, traffic accidents were increased as well as the period of the bubble economy. In the Central region of Thailand numbers of road traffic crashes were lower than Bangkok Metropolis, but the highest in the number of deaths, death rate and serious injuries in 2002. Men aged 15"29 years old had higher numbers of deaths than men in other age groups and higher than women. Deaths and injuries from road traffic crashes were the highest in April and January, because there was a long weekend in those months. About 80 percent of road traffic crashes were caused by private car and motorcycle. In 2000 about 51 percent of traffic accidents took place on the straight way, followed by the junction and curves. In 2002, about 97 percent of road traffic crashes were caused by human factors including improper passing, speeding and disregarding to traffic signal, however, the identification of causes of traffic accident needed to improve. Drunk driving, disregarding on safety equipment usage, inefficiency of law enforcement and discontinuing of road safety programs were the deepest causes of traffic accidents. Research based information, a broad coalition of stakeholder and urban planning policy were needed to incorporate for a comprehensive road safety policy formulation and actions.
Pelvic fracture, cracking or breaking of a portion of the pelvis are extremely common injuries in the side impact collisions of motor vehicles. Due to both its shape and structural architecture, mechanics of the pelvic bone is complicated. There is a lack of knowledge regarding the dynamic behavior of the pelvis and its biomechanical tolerance under impact environment. Hence this study is aimed at the understanding of the mechanical response of the human pelvis with three-dimensional finite element (FE) models, under side impact load, applied through a structure, equivalent to a car door. The door structure was modeled, considering few layers, consisting of foam (Styrodur®, 3035 CS), plastic (UHMWPE), steel, glass and steel, putting them in series. A soft tissue layer (equivalent to fat) was also considered on the greater trochanter location. These FE models (with and without the car door structure) were analyzed with ANSYS-LS-DYNA-® dynamic finite element software to compare the effect of the car door padding system for shock absorption. It was observed that with proper combination of shock absorbing material (foam, etc.) and its thickness, the transmission of impact load to the body part (pelvis, etc.) from the outer surface of the car door could be reduced.
Vehicle crash research at different levels is currently being conducted by several investigation groups in Spain, in some instances within various EU-funded projects. However there is a clear opportunity for increasing compatibility and maximizing usefulness, both at national and European levels, of the information collected by these groups. After reviewing on-going activities and programs in different countries, a framework for a nationwide crash investigation project is proposed: an organizational scheme is suggested as part of a future National Road Safety Strategic Plan; a map of investigation teams located in technological centres, universities and police agencies in Spain is presented; alternatives for several practical aspects such as team composition, deployment and operational budgets and project developmental stages are also discussed.
This report gives an overview of pedestrian accidents on Japanese roads. Database used for the analysis is national traffic accident data based on police reports. Relevant measures and background information ranging from vehicle safety, engineering and education are briefly reviewed, and area for further improvement is discussed.rn
Road safety is a major preoccupation of the European Commission and the road transport industry and depends on numerous significant factors. In order to improve road safety and to plan effective safety improvement actions for truck transport, we must first identify the problems to be addressed, i.e. what are the main causes of truck accidents. The ETAC project, initiated by the European Commission and the IRU, was launched in order to set up a heavy goods vehicle accident causation study across European countries to identify future actions which could contribute to the improvement of road safety. The results will be based on a detailed analysis of truck accident data collected in seven European countries according to a common methodology which has been elaborated through numerous national and European projects. This paper describes the common methodology used to collect the information on the scene of the accident and to analyse the data so that the reconstruction of the crash events may be carried out. CEESAR proposes a methodology using its experience gained from over 10 years of accident data collection. This methodology is based on an in-depth investigation of the parameters involved in-an accident and linked to the driver, the vehicle, the road and their environment. In-depth investigation requires accident investigator presence on the scene of the accident in order to collect volatile information such as marks on the road, weather conditions, visibility, state and equipment of the vehicle, driver interview. Later, passive and active information is gathered, either at the hospital for the driver, at the garage for the vehicle or on the spot for the road geometry. A reconstruction carried out with the help of specific software and the analysis of the data collected and calculated enables the identification of the main causes of the accident and the future actions to plan in order to improve road safety as regards truck traffic.
Motorcycle riders are one of the most vulnerable road users. Annually, on estimate 6000 people are killed in motorcycle accidents in the former 15 EU countries. The objective of this research was to investigate and analyze the main aspects and causes of this vulnerability and the accidents in general. For this aim around 70 accidents in The Netherlands were investigated in the framework of an international research program (MAIDS). Also a control group of motorcycles with riders was investigated so that exposure could be taken into account. An important result is that human failure is in 82% of the cases the main cause of the accident, in 52% this is due the other vehicle driver. Perception and decision failures are the most common failures. The most injuries are caused by the environment but they are typically only less severe (AIS1). Injuries caused by the car (front and side) are typically severe injuries (AIS4+). Previous convictions of the MC rider seem to be related to the chance to get involved in an accident. It was shown that the Dutch and the total MAIDS accident sample are comparable.
Nigeria ranks one of the highest countries in the world with the largest accident, especially when measured by whiplash associated disorders, whereas, traffic safety education rate, data and information been widely known as preventive indicators have been grossly neglected. In Nigeria, traffic safety enlightenment, awareness, political understanding and appreciation of the problem's magnitude are lacking. This study, therefore, seeks to understand and document the fact that accident causation factors in Nigeria relate more to the problem of development, poverty, knowledge and education as evidenced in most other developing countries. Among the primary accident causation factors on Nigerian roads are: - lack of a transportation system or multi-model integration - sub-standard and obsolete vehicles and road furniture - poor road maintenance, investment and engineering management - paucity of road users' and drivers' knowledge, skill, enlightenment and education of the road Use This paper submits that Nigeria being a developing nation requires purely primitive strategies being cost effective (health wise) than curative measures. It is in this light that an enduring, comprehensive and sustainable traffic safety educational programmes information base and data inventory, analysis and implementations form the focus of this study. This effort will provide basic guidelines framework and implementation procedure for a successful prevention of whiplash associated disorder resulting from road traffic crashes in Nigeria and other parts of the world.
Portugal has the highest rate of road fatalities in Europe (2002 and for Eur-15 - CARE database). For this highest rate, the accidents involving pedestrians and motorcycle occupants have a higher contribution than the European average. In the last years, especially accidents involving motorcycles have been investigated and currently two different projects are being carried out, one related with motorcycles accidents and the other with pedestrian accidents. In these projects, countermeasures among others to reduce the fatalities between these two types of road users are being studied. These accidents are investigated with the commercial accident reconstruction software PCCRASH but also new methodologies based on multibody dynamics are in development in order to more accurately study these two types of accidents. In this paper, the methodologies in use for accident reconstruction and new methodologies in development are presented. Speeding his found to be one of the major causes of road fatalities for pedestrians and motorcycle occupants. In the case of motorcycle accidents, these involve mainly young drivers. Aspects as social behavior are also important to understand the causes of some of these accidents. Some examples of accidents occurring in Portugal, involving especially motorcycles and pedestrians are presented and discussed.
This contribution introduces a number of psychological methods of analysis that are based on the practice-oriented collection of information directly at the site of an accident and that allow for an analysis and coding of the accident causes. Investigation examples and examples of the data combinations with basic medical and technical data are outlined. Objective of the collection is the inter-disciplinary investigation of human factors in the causes of accidents ("human-factor-analysis"). The psychological data are incorporated according to an integrative model for accident causes based on empiric algorithms in the data base of the accident research, where the clustered evaluation potential of comprehensive factors of the accident development can be illustrated. The central theoretical concept for the basic model of the progress of the accident from a psychological point of view comprises psychological indicators for the evaluation of the site of the accident for the analysis of the perception conditions as well as a classification of the gleaned data into the accident progress model according to chronological and local criteria. Perception conditions, action intentions and executions as well as conditions limiting perception and actions are acquired, using a questionnaire for persons involved in an accident, and are also integrated into the data structure concerning weighted feature characteristics as well as combined with other relevant features. Suitable systematization tools for the collection and coding of psychological accident development parameters have to be provided, which require primarily a model image of the corresponding processes from the persons involved in the accident (perceptions, expectations, decisions, actions). The interactive accident model contains components of the models by KÜTING 1990, MC DONALD 1972, SURREY 1969 and RASMUSSEN 1980. Based on the inter-action of the three partial systems "person", "vehicle" and "environment", the first step is the assessment of the situation by the persons involved in the accident. This is dependent on the personal attitudes and motives, on experiences and expectations concerning the progress of the situation. Subsequently, data concerning the manner of the coping with the ambiguous state as well as with the instable state (emergency reaction immediately before the accident occurs) are collected. The factors relating to the persons involved in the accident are gathered on several levels using corresponding questionnaires. The coding of the found and collected characteristics is conducted in a multidimensional evaluation relating to the technical results of the accident reconstruction and of the psychological classification, which are subsequently integrated in coded form into the data base of the accident research. The result of this analysis is a description of the development of the accident depicted on a chronological vector from a perception and decision theoretical perspective. This is explained in detail using exemplary cases.
The average CO2 concentrations relevant to a motorcyclist wearing an integral helmet were measured twenty years ago and found to be alarmingly high. The present study examined gas concentrations typically inhaled by a motorcyclist. Average concentrations of CO2 for persons (n=4) wearing integral motorcycle helmets were measured in the laboratory and the field to facilitate comparison to previous work, and similarly high average concentrations were found: above 2% when stationary, well below 1% for speeds of 50km/h or more. Detailed measurements of the time-dependent CO2 concentrations during normal inhalation showed levels of about half of the corresponding average concentrations, including 1% at standstill, though higher concentrations (4% or more) are inhaled at the beginning of each breath. Opening the visor at standstill lowered the average inhaled concentration only to about 0.8%. The oxygen deficiency is equal to the CO2 concentration, and could also contribute negatively to motorcyclist cognitive abilities.
In order to improve the protection of children transported in cars, within the CHILD programme (GR3D-CT2002-00791) real world road accidents are thoroughly analysed and then reconstructed in laboratory. Prior to comparing injury severities of real victims to physical parameter values measured on the dummies, the quality of the reconstructions is evaluated by experts who use their experience based on the investigation of numerous and various accidents. This paper presents a new tool aiming at better evaluating and validating accident reconstructions. It is based on statistical evaluation of vehicle deformations which gives weighing factors for every part of the car body structure finally leading to a specific Reconstruction Quality Score (RQS indicator). Furthermore, the reliability of this score, depending on the number of measured points, can be established. This tool includes a function aiming at adjusting the speed for a further reconstruction and at defining the launching speed and the pulse shape for complementary sled tests. Finally, the functions of the RQS software and database are presented.
Detailed investigations and reconstructions of real accidents involving vulnerable road users
(2005)
The aim of this research is to improve knowledge about vulnerable road users accidents and more specifically pedestrians or cyclists. This work has been based on a complete analysis of real accidents. From accidents chosen from an in-depth multidisciplinary investigation (psychology, technical, medical), we have tried to identify the configuration of the impact: car speed, pedestrian or cyclist orientations. Then, we have made a numerical modelling of the same configuration with a multibody software. In particular, we have reproduced the anthropometry of the victim and the front shape of the car. A first simulation has been performed on this starting configuration. Next, effects of some parameters such as car velocity or victim position at impact have been numerically studied in order to find the best correlations with all indications produced by the in-depth analysis. Finally, the retained configuration was close to the presumed real accident conditions because it reproduces in particular the same impact points on the car, the same injuries, and is according to the driver statement. This double approach associating an in-depth accident analysis and a numerical simulation has been applied on pedestrian-to-car and bicyclist-tocar accidents. It has allowed us to better understand the real kinematics of such impacts. Even if this method is based on a case to case study, it underlines which parameters are relevant on a vulnerable road user accident investigation and reconstruction.
Because of actual developments and the continuous increase in the field of drive assistant systems, representative and detailed investigations of accident databases are necessary. This lecture describes the possibility to estimate the potential of primary and secondary safety measures by means of a computerized case by case analysis. Single primary or secondary safety measures as well as a combination of both are presented. The method is exemplarily shown for the primary safety measure "Brake Assist" in pedestrian accidents. Regarding accident prevention only the primary safety measure is determined.
The improvement of passive car security devices led to a reduction of injuries, especially of the head, the neck and the torso mainly due to the airbag function. The passenger's foot and ankle could not profit from this development. Some investigators even reported a progression of leg injuries (1). In this study, we investigated a current collective of patients with foot and ankle fractures or severe soft tissue injuries in relation with defined crash parameters. Special interest was paid to the car's footwell.