2nd International Conference on ESAR
Filtern
Schlagworte
- Conference (34)
- Konferenz (34)
- Accident (19)
- Unfall (18)
- Statistics (17)
- Statistik (15)
- Analyse (math) (14)
- Schweregrad (Unfall, Verletzung) (14)
- Severity (accid, injury) (14)
- Data acquisition (13)
Institut
Today, Euro NCAP is a well established rating system for passive car safety. The significance of the ratings must however be evaluated by comparison with national accident data. For this purpose accidents with involvement of two passenger cars have been taken from the German National Road Accident Register (record years 1998 to 2004) to evaluate the results of the NCAP frontal impact test configuration. Injury data from both drivers involved in frontal car to car collisions have been sampled and have been compared, using a "Bradley Terry Model" which is well established in the area of paired comparisons. Confounders " like mass ratio of the cars involved, gender of the driver, etc. " have been accounted for in the statistical model. Applying the Bradley Terry Model to the national accident data the safety ranking from Euro NCAP has been validated (safety level: 1star <2 star <3 star <4 star). Significant safety differences are found between cars of the 1 and 2 star category as compared to cars of the 3 and 4 star category. The impact of the mass ratio was highly significant and most influential. Changing the mass ratio by an amount of 10% will raise the chance for the driver of the heavier car to get better off by about 18%. The impact of driver gender was again highly significant, showing a nearly 2 times lower injury risk for male drivers. With regard to the NCAP rating drivers of a high rated car are more than 2 times more probable (70% chance) to get off less injured in a frontal collision as compared to the driver of a low rated car.
Automotive Engineering, Mechanical Engineering and TechnologyrnAbstract: The degrees of injury severity, as a rule injuries scaled by AIS of specific regions of the human body, investigated out of road traffic accidents correspond to the body-specific loading values, which are found out with the aid of experimental or mathematical simulation of crash tests with motor vehicles or with sled tests. The coherence between the injured human being on the one hand and the physical and the theoretical model respectively on the other hand is established by the risk function, which describes the probability of degrees of injury severity in dependence on the protection criteria. Due to the different physical characteristics in the simulation, e.g. accelerations, forces, compressions and their velocity, the compilation of these quantities, comparable to the MAIS, the maximal occurred single AIS obtained in accident analysis is much more difficult in the simulation than in the accident occurrence. Therefore it is obvious to normalize the loading values gained out of simulation and to summarise them to an entire value in a suitable manner, the safety index.rn
Bicyclists are minimally or unprotected road users. Their vulnerability results in a high injury risk despite their relatively low own speed. However, the actual injury situation of bicyclists has not been investigated very well so far. The purpose of this study was to analyze the actual injury situation of bicyclists in Germany to create a basis for effective preventive measures. Technical and medical data were prospectively collected shortly after the accident at the accident scenes and medical institutions providing care for the injured. Data of injured bicyclists from 1985 to 2003 were analyzed for the following parameters: collision opponent, collision type, collision speed (km/h), Abbreviated Injury Scale (AIS), Maximum AIS (MAIS), incidence of polytrauma (Injury Severity Score >16), incidence of death (death before end of first hospital stay). 4,264 injured bicyclists were included. 55% were male and 45% female. The age was grouped to preschool age in 0.9%, 6 to 12 years in 10.8%, 13 to 17 years in 10.4%, 18 to 64 years in 64.7%, and over 64 years in 13.2%. The MAIS was 1 in 78.8%, 2 in 17.0%, 3 in 3.0%, 4 in 0.6%, 5 in 0.4%, and 6 in 0.2%. The incidence of polytrauma was 0.9%, and the incidence of death was 0.5%. The incidence of injuries to different body regions was as follows: head, 47.8%; neck, 5.2%, thorax, 21%; upper extremities, 46.3%; abdomen, 5.8%; pelvis, 11.5%, lower extremities, 62.1%. The accident location was urban in 95.2%, and rural in 4.8%. The accidents happened during daylight in 82.4%, during night in 12.2%, and during dawn/dusk in 5.3%. The road situation was as follows: straight, 27.3%; bend, 3.0%; junction, 32.0%; crossing, 26.4%; gate, 5.9%; others, 5.4%. The collision opponents were cars in 65.8%, trucks in 7.2%, bicycles in 7.4%, standing objects in 8.8%, multiple objects in 4.3%, and others in 6.5%. The collision speed was grouped <31 in 77.9%, 31-50 in 4.9%, 51-70 in 3.7%, and >70 in 1.5%. The helmet use rate was 1.5%. 68% of the registered head injuries were located in the effective helmet protection area. In bicyclists, head and extremities are at high risk for injuries. The helmet use rate is unsatisfactorily low. Remarkably, two thirds of the head injuries could have been prevented by helmets. Accidents are concentrated to crossings, junctions and gates. A significant lower mean injury severity was observed in victims using separate bicycle lanes. These results do strongly support the extension or addition of bicycle lanes and their consequent use. However, the lanes are frequently interrupted at crossings and junctions. This emphasizes also the important endangering of bicyclists coming from crossings, junctions and gates, i.e. all situations in which contact of bicyclists to motorized vehicles is possible. Redesigning junctions and bicycle traffic lanes to minimize the possibility of this dangerous contact would be preventive measures. A more consequent helmet use and use and an extension of bicycle paths for a better separation of bicyclists and motorized vehicle would be simple but very effective preventive measures.
In recent years special attention has been paid to reducing the number of fatalities resulting from road traffic accidents. The ambitious target to cut in half the number of road users who are killed each year by 2010 compared with the 2001 figures, as set out in the European White Paper "European Transport Policy for 2010: Time to Decide" implies a general approach covering all kinds of road users. Much has been achieved, e.g. in relation to the safety of car passengers and pedestrians but PTW accidents still represent a significant proportion of fatal road accidents. More than 6,000 motorcyclists die annually on European roads which amounts to 16% of the EU-15 road fatalities. The European Commission therefore launched in 2004 a Sub- Project dealing with motorcycle accidents within an Integrated Project called APROSYS (Advanced PROtection SYStems) forming part of the 6th Framework Programme. In a first step, the combined national statistical data collections of Germany, Italy, the Netherlands and Spain were analysed. Amongst other things parameters like accident location, road conditions, road alignment and injury severity have been explored. The main focus of the analysis was on serious and fatal motorcycle accidents and the results showed similar trends in all four countries. From these results 7 accident scenarios were selected for further investigation via such in-depth databases as the DEKRA database, the GIDAS 2002 database, the COST 327 database and the Dutch element of the MAIDS database. Three tasks, namely the study of PTW collisions with passenger cars, PTW accidents involving road infrastructure features, and motorcyclist protective devices have been assessed and these will concentrate inter alia on accident causes, rider kinematics and injury patterns. A detailed literature review together with the findings of the in-depths database analysis is presented in the paper. Conclusions are drawn and the further stages of the project are highlighted.
Empirical vehicle crashworthiness studies are usually based on national or in-depth traffic accident surveys: Data on accident-involved cars/drivers are analysed in order to quantify the chance of driver injury and to assess certain risk factors like car make and model. As the cars/drivers involved in the same accident form a "cluster", where the size of the cluster equals the number of accident-involved parties, traffic accident survey data are typical multi-level data with accidents as first-level or primary and cars/drivers as secondlevel or secondary units (car occupants in general are to be considered as third level units). Consequently, appropriate statistical multi-level models are to be used for driver injury risk estimation purposes as these models properly account for the cluster structure of traffic accident survey data. In recent years various types of regression models for clustered data have been developed in the statistical sciences. This paper presents multi-level statistical models, which are generally applicable for vehicle crashworthiness assessment in the sense that data on single and multiple car crashes can be analysed simultaneously. As a special case of multi-level modelling driver injury risk estimation based on paired-by-collision car/driver data is considered. It is demonstrated that assessment results may be seriously biased, if the cluster structure inherent in traffic accident survey data is erroneously ignored in the data analysis stage.
Internationally, the need is expressed for harmonized traffic accident data collection (PSN, PENDANT, etc.). Together with this effort of harmonization, traffic accident investigation moves more and more in the direction of accident causation. As current methods only partly address these needs, a new method was set up. The main characteristics of this method are: • Accident/injury causation (associated) factors can objectively be identified and quantified, by comparison with exposure information from a normal population. • All relevant accident and exposure data can be included: human-, vehicle-, and environmental related data for the pre-crash, crash and postcrash situation (the so-called Haddon matrix). The level of detail can be chosen depending on interest and/or budget, which makes the method very flexible. In this paper the accident collection and control group method are presented, including some of the achieved results from a pilot study on 30 truck accidents and 30 control locations. The data were analyzed by using cross-tabulations and classification-tree analysis. The method proved useful for the identification of statistically significant causational aspects.
During the last 5 years, the number of cars fitted with side airbags has dramatically increased. They are now standard equipment, even on many smaller cars or less luxurious vehicles. While some side airbags offer thoracic protection alone, there are those that combine thoracic and head protection (of which most deploy from the seat). Other systems employ separate airbags for head and thorax protection, which are designed to be effective noticeably in a crash against a pole. This paper proposes an evaluation of the effectiveness of side airbags in preventing thoracic injuries to passenger car occupants involved in side crashes. First, the target population (who can take benefit of side airbag deployment and in what circumstances) is defined. Side airbags can be especially effective in cases of impacts on the door with intrusion at a certain impact speed. Then, an example case of a side impact with side airbag deployment is given were side airbag deployment is thought to have had a positive effect on injury outcome. A further case is presented where the impact configuration is likely to have reduced the effect of side airbag deployment on injury outcome. Finally, the estimation of side airbag effectiveness (in terms of additional occupant protection brought exclusively by the airbag) is proposed by comparing injury risk sustained by occupants in (more or less) similar cars (fitted or non fitted with airbags) because, during these years, car structure, and side airbag conception have considerably evolved. In-depth accident data from France, the UK and Germany has been collected. Out of 2,035 side impact accident cases available in the databases, we selected 435 occupants of passenger cars (built from 1998 onwards) involved in an injury accident between year 1998 and year 2004 for EES (Energy Equivalent Speed) values between 20km/h and 50km/h. The occupants, belted or not, were sat on the struck side, whatever the obstacle and type of accidents (intersection, loss of control, etc.). For multiple impact crashes, the side impact is assumed to be the more severe one. Passenger cars were fitted with (96) or without (339) side airbags. Most of the potential risk explanatory variables were correctly and reliably reported in the databases (velocity " impact zone " impact angle " occupant characteristics, etc.). The analysis compared injury risks for different levels of EES and different types of side airbags. A logistic regression model was also computed with injury variables (such as thoracic AIS 2+ or AIS 3+) as the dependant variable and other variables (including airbag type and EES) as explanatory injury risk factors. Results revealed statistically non-significant reductions in thoracic AIS 2+ and AIS 3+ injury risk in side airbag equipped cars in the impact violence range selected (odds ratio between 0.84 and 0.98 depending on types of airbags). The results are discussed. The non-significance is assumed to be due to a low number of cases. Statistical analysis for head injuries was not possible due to the low number of accident cases with passenger cars fitted with head airbags in the databases. Moreover, the discrepancies between the data coming from different countries (especially calculation of EES) might have introduced instability in the analysis.
In Germany, in-depth accident investigations are carried out in the Hannover area since 1973. In 1999 a second region was added with surveys in Dresden and the surrounding area. Internationally, the acronym GIDAS (German In-Depth Accident Study) is commonly used for these surveys. Compared to many other countries, the sample sizes of the GIDAS surveys are much larger. The goal is to collect 1.000 accidents involving personal injuries per year and region. Data collection takes place by using a sampling procedure, which can be interpreted as a two-stage process with time intervals as primary units and accidents as secondary units. An important question is, to what extend these samples are representative for the target population from which they are drawn. Analyses show, for example, that accidents with persons killed or seriously injured are overrepresented in the samples compared to accidents with slightly injured persons. This means, that these data are subject to biases due to uncontrolled variation of sample inclusion probability. Therefore, appropriate weighting and expansion methods have to be applied in order to adjust or correct for these biases. The contribution describes the statistical and methodological principles underlying the GIDAS surveys with respect to sampling procedure, data collection and expansion. In addition, some suggestions regarding potential improvements of study design are made from a methodological point of view.
Annually within the European Union, there are over 50,000 road accident fatalities and 2 million other casualties, of which the majority are either the occupants of cars or other road users in collision with a car. The European Commission now has competency for vehicle-based injury countermeasures through the Whole Vehicle Type Approval system. As a result, the Commission has recognised that casualty reduction strategies must be based on a full understanding of the real-world need under European conditions and that the effectiveness of vehicle countermeasures must be properly evaluated. The PENDANT study commenced in January 2003 in order to explore the possibility of developing a co-ordinated set of targeted, in-depth crash data resources to support European Union vehicle and road safety policy. Three main work activity areas (Work Packages) commenced to provide these resources. This paper describes some of the outcomes of Work Package 2 (WP2, In-depth Crash Investigations and Data Analysis). In WP2, some 1,100 investigations of crashes involving injured car occupants were conducted in eight EU countries to a common protocol based on that developed in the STAIRS programme. This paper describes the purposes, methodology and results of WP2. It is expected that the results will be used as a co-ordinated system to inform European vehicle safety policy in a systematic, integrated manner. Furthermore, the results of the data analyses will be exploited further to provide new directions to develop injury countermeasures and regulations.
Validation of human pedestrian models using laboratory data as well as accident reconstruction
(2007)
Human pedestrian models have been developed and improved continually. This paper shows the latest stage in development and validation of the multibody pedestrian model released with MADYMO. The biofidelity of the multibody pedestrian model has been verified using a range of full pedestrian-vehicle impact tests with a large range in body sizes (16 male, 2 female, standing height 160-192cm, weight 53.5-90kg). The simulation results were objectively correlated to experimental data. Overall, the model predicted the measured response well. In particular the head impact locations were accurately predicted, indicated by global correlation scores over 90%. The correlation score for the bumper forces and accelerations of various body parts was lower (47-64%), which was largely attributed to the limited information available on the vehicle contact characteristics (stiffness, damping, deformation). Also, the effects of the large range in published leg fracture tolerances on the predicted risk to leg fracture by the pedestrian model were evaluated and compared with experimental results. The validated mid-size male model was scaled to a range of body sizes, including children and a female. Typical applications for the pedestrian models are trend studies to evaluate vehicle front ends and accident reconstructions. Results obtained in several studies show that the pedestrian models match pedestrian throw distances and impact locations observed in real accidents. Larger sets of well documented cases can be used to further validate the models especially for specific populations as for instance children. In addition, these cases will be needed to evaluate the injury predictive capability of human models. Ongoing developments include a so-called facet pedestrian model with a more accurate geometry description and a more humanlike spine and neck and a full FE model allowing more detailed injury analysis.
While the number of fatal accidents is diminishing every year, there is still a need of improvement and action to prevent these deaths. Basis for this purpose has to be an analysis about the factors influencing the car crash mortality. There are various studies describing the univariate influence of several factors, but crash scenarios are too complex to be described by a single variable. The multivariate analysis respects the interference of the variables and gets so to more detailed and representative results. This multivariate analysis is based on about 2,600 cases (the data have been collected by the accident research units Hannover and Dresden (during the years 1999-2003). This paper presents a multivariate model (containing ten different variables) which detects 93% of these cases properly. This means it detects the cases as truly survived and truly death.
76 severe traffic accidents had been investigated in depth in an ongoing Volkswagen-Tongji University joint accident research project in JiaDing district, Shanghai, PR China since June 2005. With a methodology similar to German accident research units in Dresden and Hannover, a research team proceeds to the scene immediately after the incident to investigate and collect various data on environment, accident occurrence, vehicle state and deformations as well as injuries. The data combined with the results of accident reconstruction will be stored in a database for further statistical and casuistic analysis. The first outcome of the project supports the hypothesis that a main causation for the large number of traffic accidents in China is the lacking of risk awareness in Chinese driver behaviour. Low seat-belt use and the high proportion of vulnerable and poorly protected two-wheelers in traffic are reasons for the high injury and fatality rate in China. The research work shows that accident research in China is feasible and able to give support to tackle one of the urging problems in Chinese development.
The "Seven Steps Method" is an analysis and classification system, which describes the human participation factors and their causes in the temporal sequence (from the perceptibility to concrete action errors) taking into consideration the logical sequence of individual basic functions. By means of the "seven steps" it is possible to describe the relevant human causes of accidents from persons involved in the accident in an economic way with a sufficient degree of exactitude, because the causes can be further differentiated in their value (e.g. diversion as external diversion with regard to impact due to surroundings) and their sub values (e.g. external diversion with regard to impact due to surroundings in the shape of a "capture" of the perception by a prominent object of the traffic environment). Theoretically it is possible that one or more causing moments can be assigned to a person involved in an accident in each of the "seven steps"; however it is also possible to sufficiently clarify the cause in only one level (examples for this are described). In the practice of accident investigation at the site of the accident, the sequence chart is also relevant. With its assistance the questioning of the people involved in an accident can be accomplished in a structured way by assigning a set of questions to each step.
The European Union has set a target to reduce all road fatalities (over 40,000) with 50% in 2010. This target percentage remained unchanged with the introduction of the ten new member states within the EU as by May 1st, 2004. According to Eurostat, 34% of all fatalities in 1998 in the, then, fifteen states of the European Union were the result of single vehicle collisions. This represents over 14,000 lives lost each year of which many can likely be saved through better roadside infrastructure design. The challenge for road safety professionals is to find methods and design strategies that help to reduce these casualties. Procedures for full-scale vehicle crash testing of guard rails were first published in the US in 1962. Present European regulation is mainly based on these procedures and later developments. Since then the vehicle fleet has changed considerably. Due to the complexity of the actual safety problem the numerical simulation approach offers a good opportunity to evaluate the different parameters involved in road safety, such as infrastructure properties, vehicle type, vehicle occupants and injuries. The ideal situation would be that simulation tools are coupled or integrated and all involved effects would be related. At the moment this is not the case yet, but initiatives are taken and a new virtual era has started. This paper offers a method looking at two components that encompass the driving environment: the car and the guardrail. As part of the EC-funded project, RISER (Roadside Infrastructure for Safer European Roads) a multi body simulation program study is carried out to determine sensitivities of some parameters in car to guardrail collisions and gives insides in performance of the car with passive safety equipment, the guardrail and the interaction of these objects with each other. By offering a set of methods that includes these two aspects and their intertwining relations, more confidence can be gained in actually reducing fatalities due to single vehicle collisions with, or due to, roadside furniture. Reducing the number of fatalities of single vehicle crashes would contribute greatly to the stated goal of reducing casualties altogether.
Since the compulsory use of child restraints for children up to 5 years of age was introduced in 2000, restraint use among younger children has increased significantly. However, the observed rate of child restraint use plateaus at around 50%, and apparently little spillover effect has been found for older children who are not covered by the law. This report examines the restraint use patterns for children who were injured in cars in relation to driver and child passenger characteristics. Univariate and multivariate analyses were conducted to describe the association between the outcome measure (the proper use of restraints for children) and relevant variables. Better ways for parents and caregivers to improve the use of restraints for children are also discussed.
The incidence and treatment of sternal fractures among traffic accidents are of increasing importance to ensure best possible outcomes. Analysis of technical indicators of the collision, preclinical and clinical data of patients with sterna fractures from 1985-2004 among 42,055 injured patients were assessed by an Accident Research Unit. Two time groups were categorized: 1985-1994 (A) vs. 1995-2004 (B). 267/42,055 patients (0.64%) suffered a sterna fracture. Regarding the vehicle type, the majority occurred after car accidents in 0.81% (251/31,183 pts), followed by 0.19% (5/2,633pts) driving motorbike, and 0.11% (4/3,258pts) driving a truck. 91% wore a safety belt. Only 13% of all passengers suffering a sternal fracture had an airbag on board (33/255 car/trucks), with an airbag malfunction in 18%. The steering column was deformed in 39%, the steering wheel in 36%. Cars in the recent years were significantly older (7.67-±5 years (B) vs. 5.88-±5 years (A), p=0.003). Cervical spine injuries are frequent (23% vs. 22%), followed by multiple rib fractures (14% vs. 12%) and lung injuries (12% vs. 11%). We found 9/146 (6%) and 3/121 patients (3%) with heart contusion among the 267 sternal fractures. MAIS was 2.56-±1.3 vs. 2.62-±1.3 (A vs. B, p=0.349). 18% of patients were polytraumatized, with 11.2% dying at the scene, 2.3% in the hospital. Sternal fractures occur most often in old cars to seat-belted drivers often without any airbag. Severe multiple rib fractures and lung contusion are concomitant injuries in more than 10% each indicating the severity of the crash. Over a twentyyear period, the injury severity encountered was not different with 18% polytrauma patients suffering sternal fractures.
Due to recent years accident avoidance and crashworthiness on Austrian roads were mostly developed on national statistics and on-scene investigation respectively. Identification and elimination of black spots were main targets. In fact many fatal accidents do not occur on such black spots and black-spot investigation has reached a limit. New methods are required and therefore the Austrian Road Safety Programme was introduced by the Austrian Ministry of Transport, Innovation and Technology. The primary objective is the reduction of fatalities and severe injuries. Graz University of Technology initiated the project ZEDATU (Zentrale Datenbank tödlicher Unfälle) with the goal to identify similarities in different accident configurations. A matrix was established which categorizes risk and key factors of participating parties. Based on this information countermeasures were worked out.
NASS: the glass is half full
(2007)
The National Accident Sampling System (NASS) was born in the late 1970s. It was based on a substantial amount of experience and analysis of what was needed in the United States to understand the safety challenges of our highways. This work also showed how to collect high quality and useful crash data efficiently. Unfortunately, when Ronald Reagan - a President who believed in limited government - was elected, any hope of full funding for NASS was lost. The concept of 75 teams investigating about 18,000 serious crashes in detail annually was never realized. The system got up to 50 teams, then was cut to 36, and finally to 24 teams investigating fewer than a quarter of the originally anticipated number of crashes per year. Despite this, the NASS investigations provide a rich source of data, collected according to a sophisticated statistical sampling system to facilitate detailed national estimates of road casualties on our nation- highways and their causes. In addition, changes have been made in recent years to increase the number of more serious crashes of recent model vehicles to make the results more relevant to improving vehicle safety. A recent, detailed examination of hundreds of rollovers has provided considerable insight into rollover casualties and into what can be done to reduce them. Some of these results will be presented that show the value of the NASS system. Our experience with NASS and the Fatal Accident Reporting System (FARS) suggests a number of improvements that could be made in the United States" crash data systems. It also provides justification for a doubling or tripling of our national expenditures on crash data collection.
The increase in light duty trucks (LDT) on the road in the US is a safety concern because of their aggressivity, or risk they present to occupants of cars, especially in side impacts. We use FARS data to look at fatality trends in frontal and side impacts between cars and LDT. FARS data is also used to determine risk, or fatalities per registered vehicle, imposed on car drivers from other vehicle types. We use NASS CDS data to investigate sources of serious injuries in vehicles with side impact. These sources of injury are categorized into three major groups: 1) contact without intrusion, 2) contact with intrusion, and 3) restraints. We find a greater fraction of intrusion related injuries in cars struck on their side by SUV or pick-up trucks than when they are struck by other cars.
This study examines the severity and types of injuries sustained by child pedestrians aged 18 years and below in order to identify the body regions at greatest risk for injury in a pedestrian accident. Detailed medical diagnoses were reviewed retrospectively for 572 child pedestrians admitted to an urban pediatric trauma center with injuries during the time period from January 2001 to December 2005. Eighty percent of these children sustained AIS 2 or greater injuries, most commonly to the lower extremity (41%) and head (34%). Fortyfour percent of admitted children had more significant AIS 3 or greater injuries primarily to the head (58%), thorax (17%) and lower extremities (14%). Testing procedures to assess the child- interaction with the motor vehicle should include injury assessment for the pediatric head, thorax and lower extremities. This understanding of how child pedestrians interact with motor vehicles may provide insight into effective countermeasures with potential for implementation in vehicle designs world-wide.
The number of injuries sustained by car occupants involving the head, thorax, spine, pelvis and the upper limbs have been reduced significantly during recent years. This is probably due to better safety features in the cars, especially the availability and usage of safety belts, airbags etc. Therefore one can notice clinically a relative increase in survivors of severe frontal crashes, but many of them have injuries to the lower extremities. To verify this, we analyzed the foot and ankle injuries of front seat passengers.
In Finland all fatal motor vehicle accidents are studied in-depth on-the-spot by multidisciplinary (police, road and vehicle engineers, physician and behavioural scientist) road accident investigation teams (legislation 2001, work started 1968), which operate in every province. The purpose of the teams is to uncover risk factors that turned an ordinary driving situation into a serious accident and give safety recommendations for improving road safety. The investigation teams do not take a stand on guilt or insurance compensation. When analysing accidents the teams use the concepts of key event, immediate, background and injury risk factors. Compiled investigation folders of each case contain investigation forms from each member, preinvestigation protocol, photographs, sketches etc. About 500 items of information are collected from each accident party. The collected information is also coded into a computer database. Both the database and the investigation folders are widely utilized by researchers and authorities conducting safety work.
This study aimed to identify the occurrence, type and mechanisms of the traumatic injuries of the vulnerable road users in vehicle collisions, and to determine the effects of human, engineering, and environment factors on traffic accidents and injuries. The pedestrian accident cases were collected in the years 2000 to 2005 from Changsha Wujing hospital China and Accident Research Unit at Medical University Hannover in Germany. A statistic analysis was carried out using the collected accident data. The results from analysis of Changsha data were compared with results from analysis of GIDAS data Hannover. The injury severities were determined using AIS code and ISS values. The results were presented in terms of cause of injuries, injury distributions, injury patterns, injury severity. The factors influenced the injury outcomes were proposed and discussed for the vehicle transport environment and road users. The results were discussed with regard to accident data collection, accident sampling and injury distributions etc. In the urban area of Changsha, motorcycles and passenger cars are most frequently involved in vehicle pedestrian accidents. Head and lower extremities injuries are the predominant types of pedestrian injuries. The pedestrian accidents were identified as vital issue in urban traffic safety and therefore a high priority should be given to this road user group in research of safe urban transportation. In Hannover area, cars are most frequently involved in traffic accidents, injured pedestrians are involved in road traffic of Germany in 13% of all causalities only in 2005 and have nearly the same number as motorcyclists, but the half of bicyclists.
The objective of this study was to identify aspects of the individual experience and behaviour of drivers in intersection accidents. A total of 40 accident drivers sketched their ideas and expectations relating to intersection assistance using the method of Structure Formation Technique. Using this method prepared content cards and relation cards for a subject matter are formed together in a structure through the application of an explicit set of rules. The structures generated in this process were compared with the structures of 20 control persons who have not recently experienced an accident at intersections. The basis for this comparison was a case-control design with matched samples regarding the variables age, sex, education, occupation, driving experience and annual mileage. The results of the accident reports indicate that additional assistance is instrumental in the perception of other road users. Generally the interviewed drivers were open-minded towards the use of intersection assistance systems. Drivers who have recently experienced an accident at intersections significantly more often approved of warning assistance in their vehicle than drivers who have not recently experienced an accident. Further accident experienced drivers favoured warning and information via audio warning more frequently. The ideas of the drivers were strongly shaped by the experiences with already available advanced driver assistance systems. Hence acoustic and visual warnings were generally preferred to tactile warnings. The findings also indicate a relationship between the variable age and the acceptance of automatic vehicle intervention, and the suggestion of a head up display as a configuration of a visual warning system.
This study updates previous IIHS studies comparing estimated delta Vs for crash tested vehicles to the distribution of estimated delta Vs in the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS). The delta V estimates for 232 frontal crash tests at 64.4km/h into a deformable barrier with 40 percent overlap are compared with estimates from frontal offset crashes in the 1997-2004 NASS database. All delta V estimates were based on SMASH, the delta V estimating program used by NASS since 1997. Results indicated that for all vehicles tested by IIHS, SMASH delta Vs were, on average, 32 percent lower than impact speeds and about 28 percent lower than the expected delta V. Almost 80 percent of all real-world frontal crashes resulting in AIS 3+ injuries and just over 60 percent of all fatal crashes occur at or below the average estimated delta V calculated for crash tested vehicles.