3rd International Conference on ESAR
Filtern
Schlagworte
- Conference (34)
- Konferenz (34)
- Unfall (21)
- Accident (19)
- Statistics (15)
- Statistik (15)
- Analyse (math) (13)
- Data acquisition (12)
- Datenerfassung (12)
- Data bank (11)
It has been pointed that most of the accidents on the roads are caused by driver faults, inattention and low performance. Therefore, future active safety systems are required to be aware of the driver status to be able to have preventative features. This probe study gives a system structure depending on multi-channel signal processing for three modules: Driver Identification, Route Recognition and Distraction Detection. The novelty lies in personalizing the route recognition and distraction detection systems according to particular driver with the help of driver identification system. The driver ID system also uses multiple modalities to verify the identity of the driver; therefore it can be applied to future smart cars working as car-keys. All the modules are tested using a separate data batch from the training sets using eight drivers" multi-channel driving signals, video and audio. The system was able to identify the driver with 100% accuracy using speech signals of length 30 sec or more and a frontal face image. After identifying the driver, the maneuver/ route recognition was achieved with 100% accuracy and the distraction detection had 72% accuracy in worst case. In overall, system is able to identify the driver, recognize the maneuver being performed at a particular time and able to detect driver distraction with reasonable accuracy.
The aim of this study was to evaluate the performance and accuracy of Event Data Recorders (EDRs). The analysis was based on J-NCAP crash tests from 2006"2007, with the corresponding EDR datasets. The pre-crash velocity, maximum delta-V and delta-V versus time history data recorded in the EDRs were compared with the reliable crash test data. The difference between the EDR pre-crash velocity and the laboratory test speed was less than 4 percent. In contrast, in several cases the maximum delta-V and delta-V versus time history data obtained from the EDRs showed uncertainty of measurement in comparisons with the reliable delta-V data. The difference in maximum delta-V in these comparisons was more than 5 percent in 10 of 14 tests and more than 10 percent in 4 of 14 tests. The EDRs underestimated the maximum delta-V in almost all tests. It was also concluded that the calculated acceleration from the EDR delta-V versus time history data showed good agreement with the instrumented accelerometer signal during the collision in almost all tests.
Impact severity is a fundamental measure for all in-depth crash investigation projects. One methodology used in the UK is based on the US Calspan software package CRASH3. The UK- in-depth crash investigation studies routinely use AiDamage3 a software package which is based on an updated version of the original CRASH3 algorithm, including enhancements to the vehicle stiffness coefficients. Real world accident-damaged vehicles are measured and their crush is correlated with a library of stiffness coefficients. These measurements are then used, along with other parameters, to calculate the crash energy and equivalent changes of velocity of the vehicles (delta-v), which is a measure of the impact severity. UK in-depth accident studies routinely validate the crash severity methodologies applied as the vehicle fleet changes. This is achieved by analysing crash test data and using the appropriate residual crush damage and other inputs to AiDamage3 and checking the program- outputs with the known crash severity parameters. This procedure checks, at least in part, the default stiffness values in the data libraries and the reconstruction methods used.
Who doesn't wear seat belts?
(2009)
Using real world accident data, seat belts were estimated to be 61% effective at preventing fatalities, and 32% effective at preventing serious injuries. They were most effective for drivers with an airbag. Seat belts were estimated as having prevented 57,000 fatalities and 213,000 seriously injured casualties in the UK since 1983. Seat belt legislation was estimated to have prevented 31,000 fatalities and 118,000 seriously injured casualties. A future increase in effective seat belt wearing rate (which takes into account seating position) in the UK from 92.5% to 93% may prevent casualties valued at a societal cost of over -£18 million per year. To target a seat belt campaign, the question "who doesn"t wear seat belts?" must be answered. Seat belt wearing rates and the number of unbelted casualties were analysed. It was primarily young adult males who didn"t wear seat belts, and they made up the majority of unbelted fatalities and seriously injured casualties.
In a first step, we have examined approximately 23 000 single vehicle accidents within the Austrian National Statistics database. In a second step, we considered 15% of all fatal "running off the road" accidents that occurred in Austria in 2003. As a result, two accident categories were specified; "leaving the road without preceding manoeuvre" and "leaving the road with preceding manoeuvre". These two categories can be basically characterised by the vehicle- heading angle and its velocity angle. In this report, we further suggest theoretical approaches for the dimensioning of a safety zone, an area adjacent to the road free of fixed objects or dangerous slopes. We also show the link between the two accident categories mentioned above and the real world accidents analysed in detail. These observations also form the basis for the required length for safety devices. Finally, we summarise accident avoidance strategies.
This study aims to analyze spine injuries in motor vehicle accidents. Between 1985 and 2004 the Hannover accident research unit documented 18353 accidents. We identified 161 front passengers (0.53%) with cervical spine injuries, 84 (0.28%) with thoracic and 95 (0.31%) with lumbar injuries. Technical and medical data was reviewed. Patients" records were retrieved. X-rays were evaluated and fractures were classified according to the Magerl classification. 68% and 57% of thoracic and lumbar fractures occurred in accidents with multiple impacts. Delta-v was 50, 40 and 40 kph in passengers with cervical, thoracic and lumbar spine, resp. Passengers with spinal fractures frequently showed numerous concomitant injuries, e.g. additional vertebral fractures. The influence of seat belts and airbags is discussed. Patient work-up has to include a thorough investigation for additional injuries.
The bicyclist accidents were analyzed to get better understanding of the occurrences and frequency of the accidents, injury distributions, as well as correlation of injury severity/outcomes with engineering and human factors in two different countries of China and Germany. The accident cases that occurred from 2001 to 2006 were collected from IVAC database in Changsha and GIDAS database in Hannover. Based on specified sampling criteria, 1,570 bicyclist cases were selected from IVAC database in Changsha, and 1806 cases were collected from Hannover, documented in GIDAS database. Statistical analyses were carried out by using these selected data. The results from the statistical analysis are presented and discussed in this study.
The focus of the technical innovation in the automobile industry is currently changing to sensor based safety systems, which are operating in the pre-crash phase of an accident. To get more information about this pre-crash phase for real accidents a simulation of this phase using the GIDAS database is done. The basics for this simulation are geometrical information about the accident location and the exact accident data out of the GIDAS database. This aggregated information gives the possibility to simulate an exact motion for every accident participant, using MATLAB / SIMULINK, in the pre-crash phase. After the simulation the information about the geometrical positions, the velocities and maneuvers of the drivers to an individual TTC (time to collision) are available. With those results it is possible to develop new useful sensor geometries using pre-crash scatter plots or estimate the efficiency of implemented active safety systems in combination with sensor characteristics. This simulation can be done for every reconstructed accident included in the GIDAS database, so these results can represent a wide spread basis for the further development of active safety systems and sensor geometries and characteristics
Over the last decades the number of traffic accident fatalities on German roads decreased by 77% down to 4968 in the year 2007. This positive development is due to optimisations of vehicle safety, roads and infrastructure and medical rescue issues. Up to now mostly the optimisations of secondary safety measures lead to this effect on vehicle safety. Since some years more and more driver assistance systems are available and lead to a further reduction of all accidents. These new systems are often comfort systems and have not primarily been developed to increase vehicle safety. In contrast to secondary safety systems primary safety systems are able to mitigate and avoid accidents. So in the future it is important to estimate the benefit of these systems in reducing accident numbers as well. Current benefit estimation methods mostly focus on a single system only and not on the combination of systems. In this paper a new method for a multivariate benefit estimation based on real accident data is developed. The paper describes the basic method to estimate the benefit of primary and secondary safety systems in combination. With the presented method the benefit will not be overestimated as it would be by a simple addition of the benefits of single systems. The model will be validated by a multivariate prospective benefit estimation of different vehicle safety systems in comparison to single benefit estimations of the same systems. For this the German In-Depth Accident Database is used. The results show the importance to implement the interactions of safety systems in the estimation process and rate the overestimation by a simple addition of the single system benefits. The validation includes primary and secondary safety systems in combination. The validation is done using more than 3500 real accidents which were initiated by cars. This sample out of the GIDAS database is representative for the current accident situation in Germany. The paper shows the necessity of a multivariate estimation of the benefit for existing and future safety systems.
One of the major problems of road safety in Europe is the powered two wheelers accidents. One of the European countries with one of the highest rates is Portugal where in 2006, mopeds and motorcycles fatalities represented 27% of all road users deaths. In this work, a deep analysis and overview of the current state of mopeds and motorcycles accidents for the 2004-2006 period is presented. Within this period 830 PTW occupants die, 2958 have been severely injured and 25000 suffer slight injuries. A detailed analysis of the conditions of these accidents has been carried out, using the data of the national accident database. This analysis provides global information, about geographic environmental conditions, driver- characteristics among others. From this data detailed information is obtained allowing to know when, where and who. In order to answer the question why more a widely collection of data has been collect for 70 accidents. The data has been collected using OECD methodology. For these accidents a detailed reconstruction has been carried out, what is especially important for fatal accidents where for instance speed in an important factor. From these collection and analysis of data a wider overview of facts and measures are extracted. Among them, some are emphasized such as that the quality and non-use of helmets plays an important role in severe and fatal accidents especially for accidents involving moped vehicles, or speed is the most important factor in fatal accidents involving motorcycles. Concerning motorcycle accident reconstruction, different tools can be used depending of the accident scenario and complexity. For simple cases, with specific characteristics, analytical formulation based in vehicle crash dynamics can be use in order to determine the impact speed of the vehicles impact, analysing the skid marks, deformations, victims rest position and considering parameters (EES, vehicle deceleration, etc). Aspects such as the energy absorption capability of motorcycles are also discussed. In the general cases the accident reconstruction software Pc-Crash has been used for the reconstruction of the accident. In very complex cases, has for instance the impact between motorcyclist and barriers, Madymo software is used especially to determine speed from injuries. An example of the impact of a motorcyclist and a motorcyclist-friendly barrier is present to illustrate the benefits and limitations of such systems.
A set of recommendations for pan-European transparent and independent road accident investigations has been developed by the SafetyNet project. The aim of these recommendations is to pave the way for future EU scale accident investigation activities by setting out the necessary steps for establishing safety oriented road accident investigations in Member States. This can be seen as the start of the process for establishing road accident investigations throughout Europe which operate according to a common methodology. The recommendations propose a European Safety Oriented Road Accident Investigation Programme which sets out the procedures that need to be put in place to investigate a sample of every day road accidents. They address four sets of issues; institutional addressing the characteristics of the programme; operational describing the conditions under which data isrncollected; data storage and protection; and reports, countermeasures and the dissemination of data.rn
Relevant accident related factors : risk and frequencies of contributing to road traffic accidents
(2009)
In the course of the European Project TRACE (Traffic Accident Causation in Europe) an attempt was made to analyse the cause of road traffic accidents from a factors' point of view. By literature review the most important independent risk factors for traffic accidents were identified to be speed, alcohol intake, male gender, young age, cell phone use, and fatigue. However, the impact of an accident related factor also depends on its prevalence in traffic and accidents, respectively. Available to the Partners in the TRACE Project were different accident databases. Causally contributing factors found by accident investigations that are most often coded in accident databases are connected to unadapted speed and inattention. Taking into account the risk increase and the frequency of contribution to accidents the conclusion can be drawn that the most relevant factors for accident causation are: "alcohol", "speed", and "inattention and distraction".
In Germany averagely two million traffic accidents happen each year and emergency medical services are called to more than 400 000 patients. Even though this number is decreasing continuously (due to improvements in the fields of vehicle safety, road construction, and accident prevention) every case is yet a challenge for the rescuers and requires improvements in emergency medicine as well. Especially during diagnostics right at the accident scene, there are only limited instruments available to gain the necessary knowledge of the injuries suffered, to come to essential decisions about treatment or transport. To provide an additional diagnostic aid by scouting and estimating the situation, a software-tool calculating the likeliness of the most frequent severe injuries (AIS 3-6) of front occupants in passenger cars has been developed to deliver this necessary information about particular accident scenarios. To achieve this, logistic likelihood functions have been calculated in a multivariate regression analysis analysing all AIS 3+ injuries in the GIDAS database of the years 1999-2006 that happened more than four times
Crash involvement studies using routine accident and exposure data : a case for case-control designs
(2009)
Fortunately, accident involvement is a rare event: the chance of an individual road user trip to end up in a crash is close to zero. Thus, according to general epidemiological principles one can expect the case-control study design to be especially suitable for quantifying the relative risk (odds ratio) of accident involvement of road users with a certain risk factor as compared to road users that do not have this characteristic. Ideally, of course, the database for such a case-control study should be established by drawing two independent random samples of cases (accidental units) and controls (nonaccidental units), respectively. If, however, special data collection is not an option, it is nevertheless possible to analyze routine accident and exposure data under a case-control design in order to fully exploit the information contained in already existing databases. As a prerequisite, accident and exposure data from different sources are to be combined in a single file of micro or grouped data in a way consistent with the case-control study design. Among other things, the proposed methodological approach offers the possibility to use in-depth data of the GIDAS type also in investigations of active vehicle safety by combining this data with appropriate vehicle trip data collected in mobility surveys.
The SafetyNet project was formulated in part to address the need for safety oriented European road accident data. One of the main tasks included within the project was the development of a methodology for better understanding of accident causation together with the development of an associated database involving data obtained from on-scene or "nearly onscene" accident investigations. Information from these investigations was complemented by data from follow-up interviews with crash participants to determine critical events and contributory factors to the accident occurrence. A method for classification of accident contributing factors, known as DREAM 3.0, was developed and tested in conjunction with the SafetyNet activities. Collection of data and case analysis for some 1 000 individual crashes have recently been completed and inserted into the database and therefore aggregation analyses of the data are now being undertaken. This paper describes the methodology development, an overview of the database and the initial aggregation analyses.
Nowadays, traffic accidents are recorded in historical databases. Regarding the huge quantity of data, the use of data mining tools is essential to help Experts, for automatically extracting relevant information in order to establish and quantify relations between severity and potential factors of accidents. An innovative approach is here proposed for an in depth investigation of real world accidents data base. Mutual information ratio based on conditional entropies is used to quantity the association strength between an accident outcome descriptor (injury severity) and other potential association factors. Information theoretic methods help to select automatically groups of factors mostly responsible of the severity of accident.
A lot of factors are related to a road traffic accident; particularly human factors such as road use characteristic, driving maneuver characteristic and safety attitude are the major ones. As a random factor is also included, so it is necessary to minimize the contribution of a random factor to identify human factors related to a road traffic accident. There are several standpoints for traffic accident analysis, such as vehicle-based, location-based and driver-based. And it is effective to analyze driver-based traffic accident data for discussion on the relation between human factors and accidents. An integrated traffic accident database system was developed for analysis considering driver- accident and violation records by ITARD, and several studies were carried out for the evaluation. Useful data for discussion on the relation between types of collision and traffic violations, and the effect of accident experience to the following accident were obtained.
Methods for analyzing the efficiency of primary safety measures based on real life accident data
(2009)
Primary safety measures are designed to help to avoid accidents or, if this is not possible, to stabilize respectively reduce the dynamics of the vehicle to such an extent that the secondary safety measures are able to act as good as possible. The efficiency of a primary safety measure is a criterion for the effectiveness, with which a system of primary safety succeeds in avoiding or mitigation the severity of accidents within its range of operation and in interactionwith driver and vehicle. Based on Daimler-´s philosophy of the "Real Life Safety" the reflection of the real world accidents in the systems range of operation is both starting point as well as benchmark for its optimization. This paper deals with the methodology to perform assessments of statistical representative efficiency of primary safety measures. To be able to carry out an investigation concerning the efficiency of a primary safety measure in a transparent and comparable way basic definitions and systematics were introduced. Based on these definitions different systematic methods for estimating efficiency were discussed and related to each other. The paper is completed by presenting an example for estimating the efficiency of actual "single" and "multi" connected primary safety systems.
A lack of representative European accident data to aid the development of safety policy, regulation and technological advancement is a major obstacle in the European Union. Data are needed to assess the performance of road and vehicle safety and is also needed to support the development of further actions by stakeholders. This short-paper describes the process of developing a data collection and analysis system designed to partly fill these gaps. A project team with members from 7 countries was set up to devise appropriate variable lists to collect fatal crash data under the following topic levels: accident, road environment, vehicle, and road user, using retrospective detailed police reports (n=1,300). The typical level of detail recorded was a minimum of 150 variables for each accident. The project will enable multidisciplinary information on the circumstances of fatal crashes to be interpreted to provide information on a range of causal factors and events surrounding the collisions.
The Powered Two Wheelers (PTWs) accidents constitute one of the road safety targets in Europe. PTWs users' fatalities represent 15% of EU road fatalities, having increased the last few years, which is quite opposite than other road users casualties. To reduce PTW accidents is necessary to know which the accident causations are from different points of view (human factor, vehicle characteristics, environment, type of accident, situation, etc.). In TRACE project ("Traffic Accident Causation in Europe", under the European Commission 6th Framework Program, 2006-2008,) a specific task was focused on PTW users point of view, analyzing extensive databases to locate the main accident configurations (type of accident, severity, frequency), and an in-depth database to obtain the causation factors, the risk factors for each configuration founded in the extensive databases analysis and the variables associated to each causation factor in the PTW configurations.
The following paper presents the nature and mechanism of injuries sustained in frontal impacts, focusing on car to car impacts. It was found that the body regions most frequently sustaining severe to fatal injuries were the legs and the thorax. The nature and mechanism of the injury sustained was investigated only for the thorax injuries, due to their potentially life threatening nature. The analysis revealed that the most frequent cause of the injury recorded was the seatbelt for low severity injuries and the front structure of the vehicle for higher severity injuries. An analysis of the effect of load limiter technology in the restraint system showed that the proportion of occupants who sustained "no thorax injury" did not increase when a load limiter was fitted to the restraint system. However, a decrease in the "organ" and "organ and skeletal" injuries was observed in the load limiter sample. Sample size and variation mean that these findings are not conclusive.
It is well known that motorcycle riding is fascinating but quite more dangerous than for example car driving. In 2006, 5,091 persons were killed as victims of crashes occurring on public roads in Germany. 52% (2,683) were car occupants, 16% (793) motorcycle riders, 14% (711) pedestrians, 10% (486) bicycle riders, 5% (235) commercial vehicle occupants, 2% (107) riders of smaller powered two-wheelers, called "Mofa, Moped and Mokick". This shows that motorcycle riders recently are the second largest group of killed traffic participants in Germany. Latest information coming from the Federal Statistics predict for the year 2007 the figure of 4,958 killed road victims in total. This would be again a successful reduction (-133 killed persons or "2.6% compared to the year 2006). But the news coming from the Federal Statistics during the year 2007 and at the begin of 2008 did not always tell the same positive story. It is questioned whether the positive trend of substantially reduced figures of killed road user year by year will longer continue for Germany. That means it could be impossible to reach the ambitious target, set by the European Commission, to cut in half the figure of killed road users until the year 2010 " compared to the figure for the year 2001. It was reported that the group of 45 to 49 years old traffic participants (all traffic modes) is conspicuous with an increase of 30% up to 297 killed road users in total from January to August 2007. This increase can be ascribed in particular by an increase of killed motorcycle riders within this age group. Due to mild weather conditions in Germany in 2007 the season for motorcycle riding began relatively early and this may be a main reason for the increase of the figure of killed motorcycle riders by 16% from January to August 2007. With this background the accident occurrence of motorcycles became more and more essential. As part of the actual discussion about historical trends, recent emphases, causes and relevant structures of the events of motorcycle crashes it is evident, to have latest and carefully updated figures coming from both the Federal Statistics and In-depth studies. The paper will give a contribution to this using the German Federal Statistics and in-depth studies, for example GIDAS. Additional data coming from the DEKRA Motorcycle Accident Database as well as from literature are considered, too. The paper will help to describe the current situation of the accident involvement of motorcycles in Germany.
As the official German catalogue of accident causes has difficulty in matching the increasing demands for detailed psychologically relevant accident causation information, a new system, based on a "7 Steps" model, so called ACASS, for analyzing and collecting causation factors of traffic accidents, was implemented in GIDAS in the year 2008. A hierarchical system was developed, which describes the human causation factors in a chronological sequence (from the perception to concrete action errors), considering the logical sequence of basic human functions when reacting to a request for reaction. With the help of this system the human errors of accident participants can be adequately described, as the causes of each range of basic human functions may be divided into their characteristics (influence criteria) and further into specific indicators of these characteristics (e.g. distraction from inside the vehicle as a characteristic of an observation-error and the operation of devices as an indication for distraction from inside the vehicle. The causation factors accordingly classified can be recorded in an economic way as a number is assigned to each basic function, to each characteristic of that basic function and to each indicator of that characteristic. Thus each causation factor can be explicitly described by means of a code of numbers. In a similar way the causation factors based on the technology of the vehicle and the driving environment, which are also subdivided in an equally hierarchical system, can be tagged with a code. Since the causes of traffic accidents can consist of a variety of factors from different ranges and categories, it is possible to tag each accident participant with several causation factors. This also opens the possibility to not only assign causation factors to the accident causer in the sense of the law, but also to other participants involved in the accident, who may have contributed to the development of the accident. The hierarchical layout of the system and the collection of the causation factors with numerical codes allow for the possibility to code information on accident causes even if the causation factor is not known to its full extent or in full detail, given the possibility to code only those cause factors, which are known. Derived from the systematic of the analysis of human accident causes ("7 steps") and from the practical experiences of on-scene interviews of accident participants, a system was set in place, which offers the possibility to extensively record not only human causation factors in a structured form. Furthermore, the analysis of the human causation factors in such a structured way provides a tool, especially for on-scene accident investigations, to conduct the interview of accident participants effectively and in a structured way.
In the course of the EUROPEAN PROJECT TRACE all fatally injured pedestrians autopsied at the Institute for Legal Medicine in Munich in 2004 had been analysed by using the "Human Functional Failure (HFF) analysis" method. It was possible to apply this method although some restrictions have to be taken into account. The results derived from this analysis comprise first the failures the pedestrians (most often "impairment of sensorimotor and cognitive abilities") and the opponents (most often " Non-detection in visibility constraints conditions") faced in the accident, second the conflicts and tasks (pedestrian crossing the street conflicting with a vehicle from the side (which was going ahead on a straight road), the degree of accident involvement (pedestrians often the primary active part), and further the contributing factors to the accident (pedestrians most often "alcohol (> 0.05% BAC)", opponents most often "visibility constraints").
The purpose of this work is to investigate the association between the injuries in motorcycle accident and the main accident configurations. The data were provided by a multicentric case-control study MAIDS regarding the risk of crash and injuries of motorcyclists. Chi-square test was used to evaluate the relationship between the variables and a logistic regression was performed to evaluate the association of injury severity with some variables supposed to be predictive factors. Lesive patterns characterized by internal haemorrhages are mainly associated with fronto-lateral crashes, above all in urban areas. Lacerations or abrasions, mainly reported in torso and lower extremities, are mostly associated with single crashes or accidents in queue also for crashes occurred to low speed (< 50 km/h). The severity of injuries is highly associated with impact speed, regardless of the crash configuration. Fractures and haemorrhages play an important role in determining the severity of injuries. The upper extremities are the most frequently traumatised anatomic areas.