6th International Conference on ESAR
Filtern
Schlagworte
- Deutschland (33)
- Germany (33)
- Conference (32)
- Konferenz (32)
- Accident (20)
- Unfall (20)
- Unfallrekonstruktion (19)
- injury) (15)
- Accident reconstruction (14)
- Schweregrad (Unfall (14)
Institut
- Sonstige (35)
- Abteilung Fahrzeugtechnik (1)
- Präsident (1)
Enhanced protection of pedestrians and cyclists remains on the focus. Besides infrastructural and behavioral aspects it is necessary to exploit technical solutions placed on motorized vehicles. Accident research needs reliable data as well as national road accident statistics. Changing the view on seriously injured road users is one of the challenges which will substantially contribute to the optimization on future traffic safety. The missing accuracy in the definition of personal injury has a detrimental effect on making cost efficient road safety policy which is not only focused on fatal accidents. The European commission requested that, starting in 2015, all EU member states provide more detailed data on the injury status of road casualties, with special regard to the group of seriously injured. Conventional accident data will always be essential. But to obtain detailed data about driver behavior in real traffic situations further data sources are required. These could be EDR data, data from electronic control units, data from traffic surveys and traffic counting, naturalistic diving studies and field operational tests. Gaining insight into normal as well as critical driver behavior will enable accident researchers to deduct functions estimating the increase or decrease of accident risk associated with certain behaviors or vehicle functions. Also with view to the introduction of highly automated driving functions in the future such data is urgently needed. Computer simulation based tools to estimate the benefits of active safety systems are another step on the way towards the safety assessment of automated driving. It is now the duty of the scientific community to ask the right questions, to develop a methodology and to merge all these data sources into a common framework for the assessment of future traffic safety innovations.
The current paper reports on the results of a pilot study aiming to investigate the effect of mobile telephone use on the driving performance of 5 amateur and 5 professional drivers. Their driving acuity was tested through a driving simulator. Analysis and interpretation of the results occurred comparing the drivers' driving performance while talking, reading messages and writing a message on the mobile phone (intervention time) with the drivers' driving performance engaged in no activity (control time). The variables affected by the mobile phone were the "steering", the "lane offset" and the "duration of lane offset". Moreover, the drivers involved in a car crash in the last five years appeared to differ from those who were not involved in a crash in both "lane offset" and "following distance". The results of this pilot study will inform the design of a large experimental study on 50 professional and 50 amateur drivers.
Although the annual traffic accident statistics published by the national police is available in public, the detailed traffic accident data has not been released in Korea. Recently the Ministry of Land, Infrastructure and Transport recognized the importance of in-depth accident data to enhance road traffic safety and initiated a research project to establish a collection of the detailed accident data. The main objective of the project is a feasibility study to establish KIDAS (Korea In-Depth Accident Study). Within this project, three university hospitals which are located in mid-size cities have been selected to collect accident data. Annually, more than 500 cases of accidents have been collected from the in-patient's interviews and diagnosis. Unlike GIDAS (German In-Depth Accident Study), currently on-site investigation can"t be performed by the Korean police. The only available data is patient medical records, patient's description of accident circumstances and the damaged vehicle. Occasionally the police provide the accident investigation reports containing very brief information on accident causation and vehicle safety. In a first step, the concept of KIDAS is to adopt the format of iGLAD (Initiative for the Global Harmonization of Accident Data) for harmonization. Since the currently collected accident information is extremely limited compared with GIDAS, the other sources of data and calculations such as KNCAP vehicle data, pc-crash simulations, vehicle registration information, insurance company data are utilized to complete the iGLAD template. Results from KIDAS_iGLAD and the cases of assessment of active safety devices such as AEBS, ESC, and LDWS will be evaluated.
Road accidents are typically analyzed to address influences of human, vehicle, and environmental (primarily infrastructure) factors. A new methodology, based on a "Venn diagram" analysis, gives a broader perspective on the probable factors, and combinations of factors, contributing both to the occurrence of a crash and to sustaining injuries in that crash. The methodology was applied to 214 accidents on the Mumbai-Pune expressway. Factors contributing to accidents and injuries were addressed. The major human factors influencing accidents on this roadway were speeding (30%) and falling asleep (29%), while injuries were primarily due to lack of seat belt use (46%). The leading infrastructure factor for injuries was impact with a roadside manmade structure (28%), and the main vehicle factor for injuries was passenger compartment intrusion (73%). This methodology can help identify effective vehicle and infrastructure-related solutions for preventing accidents and mitigating injuries in India.
Injury severity of e.g. pedestrians or bikers after crashes with cars that are reversing is almost unknown. However, crash victims of these injuries can frequently be seen in emergency departments and account for a large amount of patients every year. The objective of this study is to analyze injury severity of patients that were crashed into by reversing cars. The Hannover Medical School local accident research unit prospectively documented 43,000 road traffic accidents including 234 crashes involving reversing cars. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) was analyzed as well as the location of the accident. As a result 234 accidents were included into this study. Pedestrians were injured in 141 crashes followed by 70 accidents involving bikers. The mean age of all crash victims was 57 -± 23 years. Most injuries took place on straight stretches (n = 81) as well as parking areas (n = 59), entries (n = 36) or crossroads (n = 24). The AIS of the lower extremities was highest followed by the upper extremities. The AIS of the neck was lowest. The mean MAIS was 1.3 -± 0.6. The paper concludes that the lower extremities show the highest risk to become injured during accidents with reversing cars. However, the risk of severe injuries is likely low.
Ruptures and dissections of the thoracic and abdominal aortic vessel caused by traffic accidents are rare but potentially life-threatening injuries. They can occur by blunt trauma via seat belt or dashboard injury. The study aimed at evaluating the overall mortality, morbidity, neurological disorders, and differences in operative procedures of open repair and stenting. It shows that, with a change and improvement in diagnostic tools and surgical approach, mortality and morbidity of blunt aortic injuries were significantly reduced. Still an immediate life-threatening injury early diagnosis via multiple-slice and scans and surgical repair with minimally invasive stents showed excellent short-time results for selected patients.
Assessment of the effectiveness of Intersection Assistance Systems at urban and rural accident sites
(2015)
An Intersection Collision Avoidance System is a promising safety system for accident avoidance or injury mitigation at junctions. However, there is still a lack of evidence of the effectiveness, due to the missing real accident data concerning Advanced Driver Assistance Systems. The objective of this study is the assessment of the effectiveness of an Intersection Collision Avoidance System based on real accidents. The method used is called virtual pre-crash simulation. Accidents at junctions were reconstructed by using the numerical simulation software PC-Crashâ„¢. This first simulation is called the baseline simulation. In a second step the vehicles of these accidents were equipped with an Intersection Collision Avoidance System and simulated again. The second simulation is called the system simulation. In the system simulation two different sensors and four different intervention strategies were used, based on a time-to-collision approach. The effectiveness of Intersection Collision Avoidance System has been evaluated by using an assessment function. On average 9% of the reviewed junction accidents could have been avoided within the system simulations. The other simulation results clearly showed a change in the principal direction of force, delta-v and reduction of the injury severity.
The main focus of the benefit estimation of advanced safety systems with a warning interface by simulation is on the driver. The driver is the only link between the algorithm of the safety system and the vehicle, which makes the setup of a driver model for such simulations very important. This paper describes an approach for the use of a statistical driver model in simulation. It also gives an outlook on further work on this topic. The build-up process of the model suffices with a distribution of reaction times and a distribution of reaction intensities. Both were combined in different scenarios for every driver. Each scenario has then a specific probability to occur. To use the statistical driver model, every accident scene has to be simulated with each driver scenario (combinations of reaction times and intensities). The results of the simulations are then combined regarding the probabilities to occur, which leads to an overall estimated benefit of the specific system. The model works with one or more equipped participants and delivers a range for the benefit of advanced safety systems with warning interfaces.
Event data recorders (EDRs) are a valuable tool for in-depth investigation of traffic accidents. EDRs are installed on the airbag control module (ACM) to record vehicle and occupant information before, during, and after a crash event. This study evaluates EDR characteristics and aims at better understanding EDR performance for the improvement of accident reconstruction with more reliable and accurate information regarding accidents. The analysis is based on six crash tests with corresponding EDR datasets.
The study aimed at estimating the impact of pedelecs (with an assumed higher speed than bicycles) on the traffic accident severity in Germany for different penetration rates. The analysis shows that in many real situations (68%) an electrical support of bicycles has no influence on the sequence of accident events. Taking into account a number of unreported "single bicycle accidents", the adoption of similar traffic behavior and similar age distribution, the authors determined a shift of 400 former slightly to seriously injured cyclists in Germany per year. Overall this would be an increase of approximately 2.3% in case of 10% of pedelec penetration with the pessimistic assumption of 10 km/h speed increase although first natural driving studies predict a much lower average speed increase of pedelecs. The hypothesis verbalized in the initial question whether a higher distribution of pedelecs will result in more severe accidents in Germany is not verified. The study shows that electrical support didn"t result in higher collision speed in general. In many accident situations, the speed of pedelecs has only a minor influence on the accident severity. Further research focusing on a possible change of driver behavior especially in new target groups (elderly people) will be needed.
The Traffic Accident Research Institute at University of Technology Dresden investigates about 1,000 accidents annually in the area around and in Dresden. These datasets have been summarized and evaluated in the GIDAS (German Accident In-Depth Study) project for 13 years. During the project it became apparent that the specific traffic situation of a covert exit of a passenger car and an intersecting two-wheeler involves a high risk potential. This critical situation develops in a large part due to the lack of visibility between the driver and the intersecting bike. In this paper the accident avoidance potential of front camera systems with lateral field of view, which allows the driver to have an indirect sight into the crossing street area will be presented.
In North America, frontal crash tests in both the regulatory environment and consumer-based safety rating schemes have historically been based on full-width and moderate-overlap (40%) vehicle to barrier impacts. The combination of improved seat-belt technologies, notably belt tensioning and load limiting systems, together with advanced airbags, has proven very effective in providing occupant protection in these crash modes. Recently, however, concern has been raised over the contribution of narrower frontal impacts, involving primarily the vehicle corners, to the incidence of fatality and serious injury as a result of the potential for increased occupant compartment intrusion and performance limitations of current restraint systems. Drawing on data documented in the National Automotive Sampling System (NASS)/ Crashworthiness Data System (CDS) for calendar years 1999 to 2012, the present study examines the characteristics of existing and proposed corner crash test configurations, and the nature of real-world collisions that approximate the test environments. In this analysis, particular emphasis is placed on crash pulse information extracted from vehicle-based event data recorders (EDR's).
Analysis of pedestrian leg contacts and distribution of contact points across the vehicle front
(2015)
Determining the risk to pedestrians that are impacted by areas of the front bumper not currently regulated in type-approval testing requires an understanding of the target population and the injury risk posed by the edges of the bumper. National statistics show that approximately 10% of all accident casualties are pedestrians, with 20% to 30% of these pedestrian casualties being killed or seriously injured. However, the contact position across the front of the bumper is not recorded in national statistics and so in-depth accident databases (OTS, UK and GIDAS, Germany) were used to examine injury risk in greater detail. The results showed that some injury types and severities of injuries appear to peak around the bumper edges. Although there are sometimes inconsistencies in the data, generally there is no evidence to suggest that the edges of the bumper are less likely to be contacted or cause injury.
Many safety-relevant tasks in control or diagnostics require binary choices such as "conflict versus separation" in air traffic control, "normal versus pathological" when interpreting x-ray pictures, or "permitted versus forbidden" when inspecting airport security scans. Deciders often are uncertain, but nevertheless required to decide between two alternatives, that is, they have not only to decide upon an action, but also about the admissible level of uncertainty. If the accepted level of judgment certainty is not taken into account, the sequence of decisions does not capture the full picture of the underlying decision process. Differences in judgment certainty are relevant, because they reflect not only the adequacy of the human-machine interface that is evaluated, but also the differences in expertise of the decider and the requirements of the actual situation or task. Therefore, capturing both judgment certainty and discrimination performance is essential. A comparison of different human-machine-interfaces (for air traffic control) is used to illustrate a methodological approach, which allows for integrated analyses of decision processes based on receiver-operator-characteristics and practical guidelines for the evaluation of human-machine-interfaces for safety-relevant operation procedures are provided.
Detailed anthropometric data of pregnant women have been collected and used in the development of a computational model of the pregnant occupant model "Expecting". The model is complete with a finite element uterus and multi-body fetus, which is a novel feature in the models of this kind. The computational pregnant occupant model has been validated and used to simulate a range of impacts. The strains developed in the utero-placental interface are used as the main criteria for fetus safety. Stress distributions due to inertial loading of the fetus on the utero-placental interface play a role on the strain levels. Inclusion of fetus model is shown to significantly affect the strain levels in the utero-placental interface. This series of studies has led to the design of seatbelt features specifically for the pregnant women to enable them use the seatbelt correctly and comfortably.
SEEKING is looking for answers regarding electric powered bicycles and their relation to traffic safety issues. Does a cyclist need "E"? Is it as risky as riding a moped or are E-bikes creating conflicts with other cyclists? The project described herein, funded by the Austrian Ministry of Transport, has the aim of seeking answers to these hot topics. The SEEKING-team shows an in-depth investigation of vehicle dynamic sensing, together with subjective feedback of test riders to detect similarities and differences between conventional cycling and E-biking. Following an overview on the international status quo, measurement runs and their analyses are performed to find a set of preventative measures to make (E-)biking safer. A specific focus is the detection of curve handling, stopping and acceleration phases as well as conflict studies on course-based test rides and "real world" tests on cycling paths (naturalistic riding).
This study aimed at prediction of long bone fractures and assessment of lower extremity injury mechanisms in real world passenger car to pedestrian collision. For this purpose, two pedestrian accident cases with detail recorded lower limb injuries were reconstructed via combining MBS (Multi-body system) and FE (Finite element) methods. The code of PC Crash was used to determine the boundary conditions before collision, and then MBS models were used to reproduce the pedestrian kinematics and injuries during crash. Furthermore, a validated lower limb FE model was chosen to conduct reconstruction of injuries and prediction of long bone fracture via physical parameters of von Mises stress and bending moment. The injury outcomes from simulations were compared with hospital recorded injury data and the same long bone fracture patterns and positions can be observed. Moreover, the calculated long bone fracture tolerance corresponded to the outcome from cadaver tests. The result shows that FE model is capable to reproduce the dynamic injury process and is an effective tool to predict the risk of long bone fractures.
Cycling supports the independence and health of the aging population. However, elderly cyclists have an increased injury risk. The majority of injured cyclists is victim of a single-sided accident, an accident in which there is no other party involved. The aim of the project "Safe and Aware on the bicycle" is to develop guidelines for an advisory system that is useful in preventing single-sided accidents. This system is able to support the elderly cyclist; enabling the cyclist to timely adapt his cycling behaviour and improve cycling safety and comfort. For the development of such advisory system the causes of singles accidents and the wishes of the elderly cyclist must be known. First step to obtain this insight was a literature survey and an GIDAS research. Unfortunately accidentology research with GIDAS did not give the full understanding of the pre-crash situations and (especially the behaviour related) factors leading to the accident. The second step was consultation of elderly cyclist through a questionnaire (n=800), in-depth interviews (n=12) and focus group sessions (n=15). This offered complementary information and a much better understanding of the behavioural aspects. Results concern the behaviour in traffic and identify specific physical (i.e. problems looking backwards over the shoulder) and mental issues. Furthermore, the needs and wishes for support in specific cycling situations were identified. In conclusion; The GIDAS results together with the information obtained contacting the elderly cyclists enabled setting up requirements for an advisory system, which is useful in preventing single-sided accidents.
Since a number of human models have been developed it appears sensible to use these models also in the accident analysis. Especially the understanding of injury mechanisms and probably even injury risk curves can be significantly improved when interesting accidents are reconstructed using human body models. However, an important limitation for utilising human models for accident reconstruction is the effort needed to develop detailed FE models of the accident partners or to prepare the human model reconstruction by running physical accident reconstructions. The proposed approach for using human models for accident reconstruction is to use simplified and parametric car models. These models can be adapted to the crash opponents in a fast and cost effective way. Although, accuracy is less compared to detailed FE models, the relevant change in velocity can be simulated well, indicating that the computation of a detailed crash pulse is not needed. Two frontal impact test accidents that were reconstructed experimentally and using the parametric car models are indicating sufficient correlation of the adapted parametric car models with the full scale crash reconstructions. However, further developments of the parametric models to be capable for the use in lateral impacts and rear impacts are needed. For the PC Crash simulation runs the output sampling rate is too large to allow sufficient analysis. In addition the performance appears to be too general.
This study aimed at developing an injury estimation algorithm for AACN technologies for Germany and compared them to findings based on Japanese data. The data to build and to verify the algorithm was obtained from the German in-depth Accident Database (GIDAS) and split into a training and a validation dataset. Significant input variables and the generalized linear regression model to predict severe injuries (ISS>15) were selected to maximize area under the receiver operating characteristic curve (AUC). Probit regression with the input parameter multiple impact, delta v, seatbelt use and impact direction gave the largest AUC of 0.91. Sensitivity of the algorithm was validated at 90% and specificity at 76% for an injury risk threshold of 2%. It appears that no major differences between Japan and Germany exist for injury estimation based on delta v and impact direction. However, far side impact and multiple crash events appear to be associated with a larger risk increase in the German data.
This study aimed at comparing head Wrap Around Distance (WAD) of Vulnerable Road User (VRU) obtained from the German in-depth Accident Database (GIDAS), the China in-depth Accident Database (CIDAS) and the Japanese in-depth Accident Database (ITARDA micro). Cumulative distribution of WAD of pedestrian and cyclist were obtained for each database (AIS2+) showing that WAD of cyclists were larger than the ones of pedestrians. Comparing three regions, the 50%tile WAD of GIDAS was larger than that of both Asian accident databases. Using linear regression that might predict WAD of pedestrians and cyclists from Impact speed and VRU height, WADs were calculated to be 206cm/219cm (Pedestrian/Cyclist) for GIDAS, 170cm/192cm for CIDAS and 211cm/235cm for ITARDA. In addition, this study may be helpful for reconsideration of WAD measurement alignment between accident reconstruction and test procedures.
Pedestrians represent about 20% of the overall fatalities in Europe- road traffic accidents. In this paper a methodology is proposed to understand why the numbers are so high, especially in the south of Europe and particularly in Portugal, . First a detailed statistical analysis using Ordinal Logistic Regression model (OLR) was applied to the gathered data from all Portuguese accidents with victims in the period 2010-2012. In a second stage accident reconstruction computational techniques using pedestrian biomechanical models are used to evaluate the accident conditions that lead to the injuries, such as the speed and the impact location. For biomechanical injury criterions, the AIS (Abbreviated Injury Scale), the HIC (Head Injury Criterion) and other injury criterions based on the resulting accelerations in the pedestrian's body are used. The statistical model reported that there were several predictors that significantly influenced the pedestrian injury severity in the event of a road accident, such as Pedestrian's age, Pedestrian's gender, Vehicle Design/Category or Driver's gender. The use of injury scales and biomechanical criterions in in-depth investigation of road accidents, such as AIS, can significantly improve the quality of the reconstruction process.
The current Brussels EU Regulation No. 1235/2011, valid from May 30, 2012, has introduced an European Tyre Label with wet grip index G classes from A to G for passenger car tyres C1, light commercial vehicles tyres C2 and heavy truck- and bus tyres C3. Every wet grip class for each vehicle category has a defined band of numerical values for the wet grip index G. The legislated wet grip values G in this EU- Regulation are very low. The measured braking distances and corresponding impact speeds of the test vehicles are showing very critical results. Regulation No. 1235/2011 of the European Parliament and the Council for Type Approval of Vehicles (EU) should be changed in such a way, that for C1-tyres (normal passenger cars tyres) the minimum wet grip index G is 1.25. All C2-tyres (light commercial vehicles tyres) should at least meet a minimum wet grip index of G = 1.1. All C3-tyres (heavy trucks and buses tyres) should at least meet a minimum wet grip index of G = 0.95. Due to the missing lower limits for G in the wet grip class F for C1, C2 and C3 tyres according to Commission Regulation (EU) No. 1235/2011, officially valid from 30 May 2012, a tyre-to-road coefficient of adhesion in the extreme of 0 (zero) is legally permitted. This is an apparent flaw in above cited EU Regulation, which causes a potential danger to the road traffic safety for all motor vehicles in Europe with such tyres. The wet grip class F has to be removed urgently from said EURegulation, since a direct liability of the responsible EU-Commission can not be excluded.
The declining trend since 1991 in the number of killed people was broken in 2011 when overall 4 009 people died in traffic accidents in Germany. The question arises if there is a stagnating trend of fatalities in Germany in future? By breaking down the accidents with casualties towards a monthly view one can see a decreasing trend of fatalities in the warmer months especially since 2009. When comparing against winter months higher deviations are observed. In December 2011 an increase of 191 traffic deaths were registered (181 in 2010 compared to 372 in 2011). Further analyses of different accident influences were evaluated and their possibility of drastic change from one year to the other was determined. As seen weather- and environmental conditions are one of the major contributing factors and are one of the causes for the increased number of fatalities. To support the underlying assumption a model had been created to calculate the number of traffic deaths on a daily basis approach. As an input, road conditions projected through weather parameters and also different driving behaviors on weekdays or holidays were used. As a result, estimates of daily fatality with up to 75% precision can be achieved out of the 2009, 2010 and 2011 data. Further on it shows that weather and street conditions have a high influence on the overall resulting number of traffic accidents with casualties, and especially to the number of fatalities. Hence it is estimated that approximately 3 300 people were killed in traffic accidents in Germany in 2013 which would be again a reduction of another 13% compared to 2012. Therefore an answer to the question will be that the decreasing trend in traffic fatalities in Germany somehow is not broken when environmental conditions are included in national statistics. Their effects will become more visible in future accident statistics and it is estimated variances of 5% to 8% of the annual number of traffic fatalities in Germany will be seen.
Today's volumes of traffic require more and more responsibility from each individual road user in their interactions. Those who drive motor vehicles have the singular obligation to minimise the risk of accidents and hence the severity of injuries, particularly with a view to the most vulnerable road users such as motor bikes, bikes and pedestrians. Since responsible and pro-active driving depends first and foremost on the visual information relayed by our eyes and the visual channel this requires good command of the traffic and all-round visibility from our driver's seat. Granted that human error can never be fully excluded, improving visibility around the car is nevertheless an urgent priority. To do so, we need to rate visibility in the most realistic driving situations. Since the existing visibility metrics and methodology are not applicable to real-life driving situations, this study aimed at developing a new visibility rating methodology based on real-life accident scenarios. On the basis of the cases documented by the accident research project, this study analysed criteria indicative of diminishing visibility on the one hand and revealing some peculiarities in connection with the visibility issue on the other. Based on the above, the project set out to develop a rating methodology allowing to assess all-round visibility in various road situations taking into account both driver and road geometries. In this context, the assessment of visibility while turning a corner, crossing an intersection and joining traffic on a major road (priority through route) is of major importance. The first tests have shown that critical situations can be avoided by adapting the relevant geometries and technical solutions and that significant improvements of road safety can be derived therefrom.