7th International Conference on ESAR
Filtern
Schlagworte
- Conference (37)
- Deutschland (37)
- Germany (37)
- Konferenz (36)
- Accident (20)
- Unfall (20)
- Unfallrekonstruktion (16)
- Analyse (math) (14)
- Analysis (math) (14)
- Accident reconstruction (13)
Bus or heavy vehicle passenger accidents are rare events, compared with car accidents, but sometimes leads to a large number of victims especially in rollover crash scenarios. Two accidents occurred in Portugal in 2007 and 2013 in which 28 people died and more than 50 are injured, shown the importance of the investigation of such accidents. For the investigation of these accidents multidisciplinary teams are constituted with engineers and police officers. All the factors involved are taken into consideration including road design, traffic signs, maintenance and hardware, human factors, and vehicle factors. In this work a methodology to an accurate collection of the data is proposed. From the information collected the accident is reconstructed using the PC-CrashTM software. From this all the contribution factors are determined and recommendations to mitigate these crashes are listed. These two accidents are rollover accidents and the analysis of the injuries and its correlation with the use of retention systems is very important. From the medical data and with the dynamics of the accident determined simulations of the occupants with biomechanical models are carried out in order to evaluate the effect of the retention systems in the injuries. This analysis is based on injury criteria (such as Abbreviated Injury Score (AIS) or Injury Severity Scale (ISS)). With this it is possible to determine if the seat belt was worn or not.
Since its creation in 2011 the Pre-Crash-Matrix (PCM) offers the possibility to observe the pre-crash phase until five seconds before crash for a wide range of accidents. Currently the PCM contains more than 8.000 reconstructed accidents out of the GIDAS (German In-Depth Accident Study) database and is enlarged continuously by more than 1.000 cases per year. Hence, a detailed investigation of active safety systems in real accident situations has been made feasible. The PCM contains all relevant data in database format to simulate the pre-crash phase until the first collision of the accident for a maximum of two participants. This includes the definition of the participants and their characteristics, the dynamic behavior of the participants as time-dependent course for five seconds before crash as well as the geometry of the traffic infrastructure. The digital sketch of the accident and information from GIDAS as well as from supplementary databases represent the main input for the simulation of the pre-crash phase of an accident with the VUFO simulation model VAST (Vufo Accident Simulation Tool). This simulation in turn embodies the foundation of the PCM. The PCM underlies continual improvements and enhancements in consultation with its users. In addition to collisions of cars with other cars, pedestrians, bicycles and motorcycles the PCM now also covers car to object and car to truck collisions. The paper illustrates car to truck collisions as a showcase and explains perspectives for further developments. In 2016 a more detailed definition of the contour of the vehicle was added. Furthermore, the geometrical surroundings of the accident site will be provided in a new structure with a higher level of detail. Thus, a precise classification of road marks and objects is possible to further improve the support of developing and evaluating ADAS. This paper gives an overview about the latest developments of the PCM with its innovations and provides an outlook to upcoming enhancements. Besides potential areas of application for the development of ADAS are shown.
This work describes the results of the experimental activity, illustrating the driving behavior observed in different conditions, relating them to the different methods of ADAS intervention and comparing the driver behavior without ADAS. In the present study, driver behavior was studied in road accidents involving elderly pedestrians, with different ADAS HMIs, as a base to develop a driver model in near missing pedestrian accidents. A literature research was conducted with the aim of finding out the main influencing factors, including environment, boundary conditions, configuration of impact, pedestrian and driver information, when pedestrian fatalities occur and an analysis of frequent road accidents was conducted to get more detailed information about the driver- behavior. In order to obtain more detailed information about pedestrian accidents, real road accidents were reconstructed with multibody simulations on PC-Crash and, by the comparison between literature findings and reconstructions, a generic accident scenario was defined. The generic accident scenario was implemented on the full scale dynamic driving simulator in use at the Laboratory for Safety and Traffic Accident Analysis (LaSIS, University of Florence, Italy) in order to analyse the driving behaviors of volunteers, also considering the influence of ADAS devices. Forty-five young volunteers were enrolled for this study, resulting in forty valid tests on different testing scenarios. Two different scenarios consisted in driving with or without ADAS in the vehicle. Different kinds of ADAS, acoustic and optical, with different time of intervention were tested in order to study the different reactions of the driver. The tests showed some interesting differences between driver's behavior when approaching the critical situation. Drivers with ADAS reacted earlier, but more slowly, depending also on the type of alarm, and often with double reaction when braking. In fact, the results of the activity showed that with ADAS intervention the time to collision (TTC) increases, but the reaction time and braking modality change: a) there is a sort of "latency" time between the accelerator pedal release and the brake pressure; b) the brake pressure is initially less intense. So the driver only partially takes advance from the TTC increase. These differences were valued not only qualitatively, but quantitatively as well. This work revealed to be useful to improve the knowledge of drivers" behavior, in order to realize a driver model that can be implemented to help attaining and assessing higher levels of automation through new technology.
The advent of active safety systems calls for the development of appropriate testing methods. These methods aim to assess the effectivity of active safety systems based on criteria such as their capability to avoid accidents or lower impact speeds and thus mitigate the injury severity. For prospective effectivity studies, simulation becomes an important tool that needs valid models not only to simulate driving dynamics and safety systems, but also to resolve the collision mechanics. This paper presents an impact model which is based on solving momentum conservation equations and uses it in an effectivity study of a generic collision mitigation system in reconstructed real accidents at junctions. The model assumes an infinitely short crash duration and computes output parameters such as post-crash velocities, delta-v, force directions, etc. and is applicable for all impact collision configurations such as oblique, excentric collisions. Requiring only very little computational effort, the model is especially useful for effectivity studies where large numbers of simulations are necessary. Validation of the model is done by comparison with results from the widely used reconstruction software PC-Crash. Vehicles involved in the accidents are virtually equipped with a collision mitigation system for junctions using the software X-RATE, and the simulations (referred to as system simulations) are started sufficiently early before the collision occurred. In order to assess the effectivity, the real accident (referred to as baseline) is compared with the system simulations by computing the reduction of the impact speeds and delta-v.
Causation of traffic accidents with children from the perspective of all involved participants
(2017)
In the year 2014 about 2,800 children between zero and 14 years got injured due to traffic accidents in Austria. More than 50% were taking part in traffic as active road users like cyclists or pedestrians. Within this study 46 real world traffic accidents between vehicles and children as pedestrians were analysed. In 39 cases, car drivers hit the crossing children. In the other cases, the collision opponents were busses, trucks or motorcycles. Most of the children got hit while crossing a road at urban sites. By analysing the traffic accidents from the perspectives of all involved participants, vehicle drivers and injured children, it is possible to identify factors for each participant, which led to the accident and factors that contributed the accident. The main task is to find patterns in the behaviour of crash victims (children and driver) before the collision. One important fact is that in more than 50% of the analysed cases sight obstructions were an important contributing factor for both, the driver and the child. From drivers view situations in which the child moved unexpected into the driven road lane were often found. For the injured child, factors like: no attention to the road traffic or no sufficient traffic observation were found to be relevant. Further it- possible to sensitise children and adults to possible source of critical traffic situations according to the findings of this study.
For more than a decade, ADAC accident researchers have analysed road accidents with severe injuries, recording some 20,000 accidents. An important task in accident research is to determine the causative factors of road accidents. Apart from vehicle engineering and human factors, accident research also focuses on infrastructural and environmental aspects. To find out what accident scenarios are the most common in ADAC accident research and what driver assistance systems can prevent them, our first task was to conduct a detailed accident analysis. Using CarMaker, we performed a realistic simulation of accident scenarios, including crashes, with varying parameters. To begin with, we made an initial selection of driver assistance systems in order to determine those with the greatest accident prevention potential. One important finding of this study is that the safety potential of the individual driver assistance systems can actually be examined. It also turned out that active safety offers even much more potential for development and innovation than passive safety. At the same time, testing becomes more demanding, too, as new systems keep entering the market, many of them differing in functional details. ADAC will continue to test all driver assistance systems as realistically as possible so as to be able to provide advice to car buyers. Therefore, it will be essential to develop and improve test conditions and criteria.
The proportion of older road users is increasing because of demographic change (in the group 65+ from current 18% to about 24% by 2030). The mobility needs of people 65+ often differ from those of younger people. Seniors (65+) are already more involved in fatal accidents than younger road users. According to the age development, the senior share of road deaths in the EU of today is increasing nearly one-fifth to one-third. From the in-depth analysis of accidents generic simulation models were developed. Attention has been paid both to psycho-physical characteristics as well as on the social and physical environment and their specifics in conjunction with seniors. By simulating the defined scenarios and varying the defined relevant parameters, accident influencing factors were examined as a basis for avoidance. In addition, the parameters were varied to show the influence from the vehicle, the pedestrian and the infrastructure to avoid the accident or to characterize the conditions for which the accident is inevitable.
Twenty-eight percent of traffic accidents in Japan are rear-end collisions, and of these, 13% are multiple collisions (three or more vehicles and/or roadside objects). A post-crash braking system enables the driver to stop the vehicle in a short distance after a rear-end collision to prevent secondary collisions. In this study, the effectiveness of a post-crash braking system was examined using a drive recorder database. In 64% of rear-end collisions, the driver's braking was interrupted after the collision. The stopping distance was estimated with time data from the drive recorder. We predict that the brake assist would be effective in preventing secondary collisions in 21% of cases.
For the determination of the road surface roughness common methods have been established, like Skid Resistance Tester (SRT) or the Sideway-force Coefficient Routine Investigation Machine (SCRIM). Both methods are used to measure a comparable and reliable maximum friction potential value and to assess the quality of the road surface. However, the comparison of the measurements under real conditions and the results of measurements with SRT and SCRIM showed only minor correlations. The paper shows the comparison between these standardised methods and real vehicle braking tests and discusses the results.
In this study, the mean profile depth (MPD) that expresses roughness of road pavements was calculated using the road survey equipment vehicle and the calculated MPD was compared with the real number of traffic accidents. The analysis method used in this study was to classify the appropriate clustering in relation to traffic accidents using the K-means clustering and to compare this with the presence of traffic accidents via the MPDs to derive the result. K-means clustering was used in the analysis method and four clusters were found using the clustering analysis results. The center of each cluster was 0.627, 0.850, 1.118, and 1.237, respectively. The result of this study is expected to be utilized as foundational research in the traffic safety area.
Powered Two Wheeler (Motorcycle) crashes are overrepresented in EU, England, and United States casualty statistics for both fatal and serious injuries. While regional geographic differences are evident for motorcycle size, type, and engine displacement, the casualty statistics consistently indicate significantly higher injury rates for all motorcycle riders when compared to car occupants. Accident analysis and reconstruction of these motorcycle crashes is a necessary process to gain further understanding of potential injury mitigation strategies. This paper focuses on the analysis of the rider post impact trajectory in the immediate moments following a crash. The rider and motorcycle, while loosely coupled by seating position leading up to a crash, quickly decouple as the crash forces develop. As a result, the rider moves relative to the motorcycle and relative to the collision partner. This movement, or trajectory, is primarily influenced by the type and configuration of the impact, the type and configuration of the motorcycle and collision partner, and the speeds involved. Understanding the rider's post impact trajectory will assist in the development of injury mitigation strategies. Both the free flight trajectory of the rider and the rider's trajectory as influenced by interaction with the motorcycle and collision partner are examined. Rider trajectories in full scale crash testing and real world motorcycle crashes are both studied and presented. The resulting physical evidence that can be observed by an accident analyst is discussed. The application of projectile motion physics is analyzed and the necessary input parameters, such as initial launch angle, are studied. This study will assist in understanding the post-impact dynamics of a motorcyclist, and will provide useful information to analysts evaluating real world crashes.
Cyclists are more likely to be injured in fatal crashes than motorised vehicles. To gain detailed and precise behavioural data of road users, i.e. trajectories, a measuring campaign was conducted. Therefore, a black-spot for accidents with cyclists in Berlin, Germany was selected. The traffic has been detected by a fully automated traffic video analysis system continuously for twelve hours. The video surveillance system is capable of automatically extracting trajectories, classifying road user types and precise determining and positioning of conflicts and accidents. Additionally, pre-conflict and pre-accident situations could be analysed to provide further in-depth understanding of accident causation. The evaluation of the measuring campaign comprised the investigation of traffic parameters, e.g. traffic flow, as well as traffic-safety related parameters based on Surrogate Safety Measures (SSM). Furthermore, the spatial and temporal distributions of conflicts involving cyclists were determined. As a result, three possible conflict clusters could be identified, of which one cluster could be confirmed by detailed video analysis, showing conflicts caused by right turning vehicles.
Car occupants have a high level of mortality in road accidents, since passenger cars are the prevalent mode of transport. In 2013, car occupant fatalities accounted for 45% of all road accident fatalities in the EU. The objective of this research is the analysis of basic road safety parameters related to car occupants in the European countries over a period of 10 years (2004-2013), through the exploitation of the EU CARE database with disaggregate data on road accidents. Data from the EU Injury Database for the period 2005 - 2008 are used to identify injury patterns, and additional insight into accident causation for car occupants is offered through the use of in-depth accident data from the EC SafetyNet project Accident Causation System (SNACS). The results of the analysis allow for a better understanding of the car occupants' safety situation in Europe, thus providing useful support to decision makers working for the improvement of road safety level in Europe.
Injury probability functions for pedestrians and bicyclists based on real-world accident data
(2017)
The paper is focusing on the modelling of injury severity probabilities, often called as Injury Risk Functions (IRF). These are mathematical functions describing the probability for a defined population and for possible explanatory factors (variables) to sustain a certain injury severity. Injury risk functions are becoming more and more important as basis for the assessment of automotive safety systems. They contribute to the understanding of injury mechanisms, (prospective) evaluation of safety systems and definition of protection criteria or are used within regulation and/or consumer ratings. In all cases, knowledge about the correlation between mechanical behavior and injury severity is needed. IRFs are often based on biomechanical data. This paper is focusing on the derivation of injury probability models from real world accident data of the GIDAS database (German In-depth Accident Study). In contrast to most academic terms there is no explicit term definition or definition of creation processes existing for injury probability models based on empirical data. Different approaches are existing for such kind of models in the field of accident research. There is a need for harmonization in terms of the used methods and data as well as the handling with the existing challenges. These are preparation of the dataset, model assumptions, censored/unknown data, evaluation of model accuracy, definition of dependent and independent variable, and others. In the presented study, several empirical, statistical and phenomenological approaches were analyzed regarding their advantages and disadvantages and also their applicability. Furthermore, the identification of appropriate prediction parameters for the injury severity of pedestrians has been considered. Due to its main effect on injuries of pedestrians and bicyclists, the importance of the secondary impact has also been analyzed. Finally, the model accuracy, evaluated by several criteria, is the rating factor that gives the quality and reliability for application of the resulting models. After the investigation and evaluation of statistical approaches one method was chosen and appropriate prediction variables were examined. Finally, all findings were summarized and injury risk functions for pedestrians in real world accidents were created. Additionally, the paper gives instructions for the interpretation and usage of such functions. The presented results include IRFs for several injury severity levels and age groups. The presented models are based on a high amount of real world accidents and describe very well the injury severity probability of pedestrians and bicyclists in frontal collisions with current vehicles. The functions can serve as basis for the evaluation of effectiveness of systems like Pedestrian-AEB or Bicycle-AEB.
When assessing the consequences of accidents normally the injury severity and the damage costs are considered. The injury severity is either expressed within the police categories (slight injury, severe injury or fatal injury) or the AIS code that rates the fatality risk of a given injury. Both injury metrics are assessing the consequences of the accident directly after the accident. However, not all consequences of accidents are visible directly after the accident and the duration of the consequences are different. Besides a physiological reduction of functionality social and psychological implications such as reduced mobility options, problems to continue the original job etc. are happening. In order to assess long term consequences of accidents the MHH Accident Research Unit established a brief questionnaire that is distributed to accident involved people of the Hannover subset of the GIDAS data set approx. one year after the accident beginning with the accident year 2013. The basic idea of using a brief questionnaire (in fact only one page) is to obtain a relatively large return rate because the questionnaire appears to be simple and quickly answered. This appears to be important because it is believed that the majority of accident involved people will not report long term consequences. In order to allow a more detailed survey amongst those responders that are reporting long term consequences they are asked for a written consent for the additional questionnaire that will be distributed at a time that is not yet defined. Long term consequences are reported for all addressed areas, medical, physiological, psychological and sociological by people without injuries, with minor injuries and with severe injuries.
[Introduction:] A large number of road users involved in road traffic crashes recover from their injuries, but some of them never recover fully and suffer from some kind of permanent disability. In addition to loss of life or reduced quality of life, road accidents carry many and diverse consequences to the survivors such as legal implications, economic burden, job absences, need of care from a third person, home and vehicle adaptations as well as psychological consequences. Within an EU funded project MOVE/C4/SUB/2011-294/SI2.628846 (REHABIL AID) these consequences were analyzed more detailed.
The objectives of this paper are the analysis of the accident risk of drivers brain pathologies (Mild Cognitive Impairment, Alzheimer- disease, and Parkinson- disease), and the investigation of the impact of driver distraction on the accident risk of patients with brain pathologies, through a driving simulator experiment. The three groups of patients are compared to a healthy group of similar demographics, with no brain pathology. In particular, 125 drivers of more than 55 years old (34 "controls"" and 91 "patients") went through a large driving simulator experimental process, in which incidents were scheduled to occur. They drove in rural and urban areas, in low and high traffic volumes and in three distraction conditions (undistracted driving, conversation with a passenger and conversation through a mobile phone). The statistical analyses indicated several interesting findings; brain pathologies affect significantly accident risk and distraction affects more the groups of patients than the control one.
Whiplash injuries are characterized by the high variability of its symptoms and by the subjectivity of its diagnosis, which sometimes leads to frauds perpetrated by victims of rear-end impacts. It is estimated that whiplash injuries cost annually about 10.000 million Euros in Europe. Therefore, the aim of this study was to investigate the influence of the dynamics of the accident in which the victim was involved in the probability of development of whiplash associated injuries. In the presented methodology, first an accident reconstruction is performed where the dynamics of the accident is determined. This is carried out using the software PC-Crash, police and insurance companies' data. Then biomechanical injuries criteria related with whiplash injuries are evaluated. For the evaluation of the probability of having whiplash injuries, the Neck Injury Criterion (NIC) of the victim and the mean acceleration of the vehicle were evaluated. Then, with medical reports, the results of the accident reconstruction are correlated with the reported injuries. Some examples are presented. The results obtained indicate that the study of the dynamics of the road accidents in which the victims were involved could be used as an auxiliary of the prognosis of whiplash injuries and is important for a precise diagnosis of this type of injuries.
In most of developed countries, the progress made in passive safety during the last three decades allowed to drastically reduce the number of killed and severely injured especially for occupants of passenger cars. This reduction is mainly observed for frontal impacts for which the AIS3+ injuries has been reduced about 52% for drivers and 38% for front passengers. The stiffening of the cars' structure coupled with the generalization of airbags and the improvement of the seatbelt restraint (load limiter, pretension, etc.) allowed to protect vital body regions such as head, neck and thorax. However, the abdomen did not take advantage with so much success of this progress. The objective of this study is to draw up an inventory on the abdominal injuries of the belted car occupants involved in frontal impact, to present adapted counter-measures and to assess their potential effectiveness. In the first part the stakes corresponding to the abdominal injuries will be defined according to types of impact, seat location, occupants' age and type of injured organs. Then, we shall focus on the abdominal injury risk curves for adults involved in frontal impact and on the comparisons of the average risks according to the seat location. In the second part we will list counter-measures and we shall calculate their effectiveness. The method of case control will be used in order to estimate odds ratio, comparing two samples, given by occupants having or not having the studied safety system. For this study, two type of data sources are used: national road injured accident census and retrospective in-depth accident data collection. Abdominal injuries are mainly observed in frontal impact (52%). Fatal or severe abdominal occupant- injuries are observed at least in 27% of cases, ranking this body region as the most injured just after the thorax (51%). In spite of a twice lower occupation rate in the back seats compared to the front seats, the number of persons sustaining abdominal injuries at the rear place is higher than in the front place. In recent cars, the risk of having a serious or fatal abdominal injury in a frontal impact is 1.6% for the driver, 3.6% for the front passenger and 6.3% for the rear occupants. The most frequently hurt organs are the small intestine (17%), the spleen (16%) and the liver (13%). The most common countermeasures have a good efficiency in the reduction of the abdominal injuries for the adults: the stiffness of the structure of the seats allows decreasing the abdominal injury risk from 54% (driver) to 60% (front occupant), the seatbelt pretensioners decrease also this risk from 90% (driver) to 83% (front passenger).
Still correlated with high mortality rates in traffic accidents traumatic aortic ruptures were frequently detected in unprotected car occupants in the early years. This biomechanical analysis investigates the different kinds of injury mechanisms leading to traumatic aortic injuries in todays traffic accidents and how the way of traffic participation affects the frequency of those injuries over the years. Based on GIDAS reported traffic accidents from 1973 to 2014 are analyzed. Results show that traumatic aortic injuries are mainly observed in high-speed accidents with high body deceleration and direct load force to the chest. Mostly chest compression is responsible for the load direction to the cardiac vessels. The main observed load vector is from caudal-ventral and from ventral solely, but also force impact from left and right side and in roll-over events with chest compression lead to traumatic aortic injuries. Classically, the injury appeares at the junction between the well-fixed aortic arch and the pars decendens following a kind of a scoop mechanism, a few cases with a hyperflexion mechanism are also described. In our analysis the deceleration effect alone never led to an aortic rupture. Comparing the past 40 years aortic injuries shift from unprotected car occupants to today's unprotected vulnerable road users like pedestrians, cyclists and motorcyclists. Still the accident characteristics are linked with chest compression force under high speed impact, no seatbelt and direct body impact.
To elucidate the risk of pedestrians, bicycle and motorbike users, data of two accident research units from 1999 to 2014 were analysed in regard to demographic data, collision details, preclinical and clinical data using SPSS. 14.295 injured vulnerable road users were included. 92 out of 3610 pedestrians ("P", 2.5%), 90 out of 8307 bicyclists ("B", 1.1%) and 115 out of 4094 motorcycle users ("M", 2.8%) were diagnosed with spinal fractures. Thoracic fractures were most frequent ahead of lumbar and cervical fractures. Car collisions were most frequent mechanism (68, 62 and 36%). MAIS was 3.8, 2.8 and 3.2 for P, B and A with ISS 32, 16 and 23. AIS-head was 2.2, 1.3 and 1.5). Vulnerable road users are at significant risk for spine fractures. These are often associated with severe additional injuries, e.g. the head and a very high overall trauma severity (polytrauma).
While cyclists and pedestrians are known to be at significant risk for severe injuries when exposed to road traffic accidents (RTAs) involving trucks, little is known about RTA injury risk for truck drivers. The objective of this study is to analyze the injury severity in truck drivers following RTAs. Between 1999 and 2008 the Hannover Medical School Accident Research Unit prospectively documented 43,000 RTAs involving 582 trucks. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) were analyzed. Technical parameters (e.g. delta-v, direction of impact), the location of accident, and its dependency on the road type were also taken into consideration. The results show that the safety of truck drivers is assured by their vehicles, the consequence being that the risk of becoming injured is likely to be low. However, the legs especially are at high risk for severe injuries during RTAs. This probability increases in the instance of a collision with another truck. Nevertheless, in RTAs involving trucks and regular passenger vehicles, the other party is in higher risk of injury.
A study on knowledge and practices of first aid and CPR among police officers in Colombo and Gampaha
(2017)
Around 85% of deaths in developing countries have been found to be due to road traffic accidents (RTAs), which cost the countries around 1-2% of their gross national product (GNP). In Sri Lanka there were 2,436 deaths reported from 36,045 RTAs in 2014. This study aimed at assessing first aid and cardiopulmonary resuscitation (CPR) knowledge among police officers and identifying its relationship to their first aid and CPR practices. A study was done on 493 police officers from Colombo and Gampaha who were selected using convenience sampling through a self-administered questionnaire. The results showed that the police officers had unsatisfactory knowledge and practices of CPR and interventions for bleeding and fractures. These should therefore be focused in their further training.
In this study, we compared the injury severity of occupants according to the seating position and the crashing direction in motor vehicle accidents. In the driver's point of view, it was separated the seating position as "Near-side" and "Far-side". The study subjects were targeted by people who visited 4 regional emergency centers following motor vehicle accidents. Real-world investigation was performed by direct and indirect methods after patient- consent. The information of the damaged vehicle was informed by Collision Deformation Classification (CDC) code and the information of the injury of patients was informed by using the Abbreviated Injury Score (AIS) and Injury Severity Score (ISS). When the column 3 in CDC code was P, damaged at the middle part of lateral side, the average point of AIS 3 was 1.91-±1.72 in near-side and 1.02-±1.31 in far-side (p<0.01). The average point of maximum AIS (MAIS) was 2.78-±1.39 in near-side and 2.02-±1.11 in far-side (p<0.01). The average point of ISS was 15.74-±14.71 in near-side and 8.11-±8.39 in far-side (p<0.01). Also, when the column 3 in CDC code was D, damaged at the whole part of lateral side, it was significant that the average point of AIS 3 and MAIS in near-side was bigger than in far-side (p=0.02).
In-depth accident investigation offers many advantages for the analysis and comprehension of crash mechanisms. IFSTTAR makes such investigations since 1992 without interruption. The corresponding database contains more than 1200 accident case studies. Currently, in-depth accident investigation is one of the best ways to determine the speed or cars involved in accidents. This paper first presents the methods used for accident investigation and for accident kinematic reconstruction. Then, in order to illustrate the interest and possible applications of such accident data, it shows some results from a recent study based on the IFSTTAR in-depth accident study programme (IDAS) and dealing with the link between travelling speed and accident risk.