16th ESV Conference 1998
Filtern
Schlagworte
- Anfahrversuch (5)
- Impact test (veh) (5)
- Safety (5)
- Sicherheit (5)
- Forschungsarbeit (3)
- Research project (3)
- Seitlicher Zusammenstoß (3)
- Side impact (3)
- Accident (2)
- Analyse (math) (2)
Institut
An approach to the standardization of accident and injury registration systems (STAIRS) in Europe
(1998)
STAIRS is a European Commission funded study whose aim is to produce a set of guidelines for a harmonised, crash injury database. The need to evaluate the effectiveness of the forthcoming European Union front and side impact directives has emphasised the need for real world crash injury data-sets that can be representative of the crash population throughout Europe. STAIRS will provide a methodology to achieve this. The ultimate aim of STAIRS is to produce a set of data collection tools which will aid decision making on vehicle crashworthiness as well as providing a means to evaluate the effectiveness of safety regulations. This paper will disseminate the up-to-date findings of the group as they try to harmonise their methods. The stage has been reached where studies into the diverse methods of the UK, French and German systems of crash injury investigation have been undertaken. An assessment has already been made of the relationships between the three current systems in order to define the areas of agreement and divergence. The conclusions reached stated that there were many areas that are already closely related and that the differences were only at the detailed level. With the emphasis on secondary safety and injury causation, core data sets were decided upon, taking into account: vehicle description, collision configuration, structural response of vehicles, restraint and airbag performance, child restraint performance, Euro NCAP, pedestrian and vehicle occupant kinematics, injury description and causation. Each variable was studied objectively, the important elements isolated and developed into a form that all partners were agreeable on. A glossary of terms is being developed as the project progresses which includes ISO standards and other definitions from the associated CAREPLUS project, which addresses the comparability of national data sets. A major consideration of the group was the data collection method to be employed. The strengths and weaknesses of each study were investigated to obtain a clear idea of which aspects offered the best way forward. The quality of this information and transference into a common format, as well as the necessary error checking systems to be employed have just been completed and are described. In tandem with this area of study the problem of the statistical relationship of each sample to the national population is also being investigated. The study proposes a mechanism to use a sample of crash injury data to represent the national and international crash injury problem
A means of assessing the passive safety of automobiles is a desirable instrument for legislative bodies, the automobile industry, and the consumer. As opposed to the dominating motor vehicle assessment criteria, such as engine power, spaciousness, aerodynamics and consumption, there are no clear and generally accepted criteria for assessing the passive safety of cars. The proposed method of assessment combines the results of experimental safety tests, carried out according to existing legally prescribed or currently discussed testing conditions, and a biomechanical validation of the loading values determined in the test. This evaluation is carried out with the aid of risk functions which are specified for individual parts of the body by correlating the results of accident analysis with those obtained by computer simulation. The degree of conformance to the respective protection criterion thus deduced is then weighted with factors which take into account the frequency of occurrence and the severity of the accident on the basis of resulting costs. Each of the test series includes at least two frontal and one lateral crash test against a deformable barrier. The computer-aided analysis and evaluation of the simulation results enables a vehicle-specific overall safety index as well as partial and individual safety values to be determined and plotted graphically. The passive safety provided by the respective vehicle under test can be defined for specific seating positions, special types of accident, or for individual endangered parts of the body.
Many big cities in Europe and elsewhere in the world have problems managing the traffic especially during rush hours. The improvement of the parking problematic and environmental protection as well are important aspects for the future traffic design of urban areas. To improve the traffic situation the development of new traffic concepts and alternative vehicles are required. The BMW company has developed a new type of two-wheel vehicle. This two-wheeler constitutes a totally new concept. BMW implemented a lot of safety features, such as a structure made up of rollover bars and a crush element instead of a front protecting plate. Furthermore the driver can secure himself with two safety belts. The paper contains a description of the novel two-wheel vehicle concept designed so far. BMW's concept and the safety features are also explained. The Federal Highway Research Institute (BASt) was given the task of assessing the concept as a whole with regard to the active and passive safety and the exemption of the obligation to wear a helmet. The expertise concluded that the BMW two-wheeler concept has a very high safety standard. Some extracts of the expertise, in particular the investigations concerning the exemption of the obligation to wear a helmet are presented. Common legal requirements for the vehicle registration of vehicle concepts similar to the BMW two-wheeler in Germany have been formulated.
This paper provides an overview of the research work of the European Enhanced Vehicle-safety Committee (EEVC) in the field of crash compatibility between passenger cars. Since July 1997 the EC Commission is partly funding the research work of EEVC. The running period of this project will be two years. The progress of five working packages of this research project is presented: Literature review, Accident analysis, Structural survey of cars, Crash testing, and Mathematical modelling. According to the planned time schedule the progress of research work is different for the five working packages.
Side-impact safety of passenger cars is assessed in Europe in a full-scale test using a moving barrier. The front of this barrier is deformable and represents the stiffness of an 'average' car. The EU Directive 96/27/EC on side impact protection has adopted the EEVC Side Impact Test Procedure, including the original performance specification for the barrier face when impacting a flat dynamometric rigid wall. The requirements of the deformable barrier face, as laid down in the Directive, are related to geometrical characteristics, deformation characteristics and energy dissipation figures. Due to these limited requirements, many variations are possible in designing a deformable barrier face. As a result, several barrier face designs are in the market. However, research institutes and car manufacturers report significant difference in test results when using these different devices. It appears that the present approval test is not able to distinguish between the different designs that may perform differently when they impact real vehicles. Therefore, EEVC Working Group 13 has developed a number of tests to evaluate the different designs. In these tests the barrier faces are loaded and deformed in a specific and/or more representative way. Barrier faces of different design have been evaluated. In the paper the set-up and the reasoning behind the tests is presented. Results showing specific differences in performance are demonstrated.