17th ESV Conference 2001
Filtern
Schlagworte
- Conference (5)
- Konferenz (4)
- Safety (4)
- Sicherheit (4)
- Accident (3)
- Anfahrversuch (3)
- Bemessung (3)
- Design (overall design) (3)
- Impact test (veh) (3)
- Unfall (3)
Institut
- Abteilung Fahrzeugtechnik (4)
- Präsident (1)
- Sonstige (1)
Topics of this report are: Road construction (highways, interstate roads, urban by-passes, cycle tracks, construction sites, level crossings removal), traffic management systems, road tunnel equipment, harmonisation of vehicle regulations, accident statistics and accident research, passive vehicle safety, active vehicle safety , automotive environmental protection and rescue systems.
EEVC Status report
(2001)
Despite the steadily declining number of pedestrian fatalities and injuries in most European countries during recent decades, pedestrian protection is still of great importance in the European Union as well as in Germany. This is because they still constitute a large proportion of road user casualties and are more likely to suffer serious and fatal injuries than most other road users. In 1999 only car occupants suffered more fatal injuries than pedestrians in Germany. In December 1998, EEVC WG 17 completed their review and updating of the EEVC WG 10 pedestrian test procedure that made it possible to evaluate the protection afforded to pedestrians by the front of passenger cars in an accident. Within the scope of this procedure, four different impactors are used representing those parts of the body which are injured very often and/or very seriously in vehicle-pedestrian-collisions. In a project executed by IKA and BASt, a small family car was tested according to the EEVC WG 17 test procedure. Afterwards modifications to the car were carried out in order to improve the pedestrian protection provided by the vehicle design. There were certain restrictions placed on the level of modifications undertaken, e.g. only minor modifications to vehicle styling and to the vehicle structures, which provide passenger protection. The redesigned vehicle was tested again using the WG 17 test procedure. The test results of the modified vehicle were compared with those of the standard vehicle and evaluated. The results show that considered measures for pedestrian protection in many areas of the vehicle front structure and the use of innovative techniques can lead to a significant reduction of the loads of pedestrians at an acceptable expense.
EEVC Working Group 15 (Compatibility Between Passenger Cars) has carried out research for several years thanks to collaborative project funded by the E.C. and also by exchanging results of projects funded by national programmes. The main collaborative activity of the EEVC WG15 for the last four years was a research project partly funded by the European Commission, where the group made the first attempt to investigate compatibility between passenger cars in a comprehensive research program. Accident, crash test, and mathematical modelling data were analysed. The main result was that structural incompatibilities were frequently found and identified as the main source of incompatibility problems but were not easy to quantify. Unfortunately as little vehicle information other than mass is recorded in most accident databases, most analyses have only been able to show the effect of mass or mass ratio. Common ideas to improve compatibility have been reached by this group and from discussion with other research groups. They will be investigated in the next phase, where research work will concentrate on the development of methods to assess compatibility of passenger cars. The main idea is that the prerequisite to improve crash compatibility between cars is to improve structural interaction. The most important issue is that improved compatibility must not compromise a vehicle- self protection. Test methods should lead to vehicles which show good structural interaction in car to car accidents. Test methods to prove good compatibility may be an adaptation of existing regulatory test procedures (offset deformable barrier test or full width test like in the USA) for frontal impact or may be new compatibility tests. Additional criteria, e.g. impact force distribution, and maximum vehicle deceleration or maximum vehicle impact force should result in compatible cars. Attempts will be made to estimate the benefit of a more compatible car fleet for the European Community.
The purpose of this paper is to review injuries found in real world lateral collisions and determine the mechanisms responsible for certain kinds of biomechanical failure. During the last years the distribution of deaths among the different types of accidents has changed. Lateral collisions now are the most frequent cause of fatal and other serious injuries. Every third accident is an impact from the side, while every second fatality is the result of a lateral accident. Just a few years ago this value was no higher than 30%. This is probably the result of increasing safety standards for frontal collisions (airbags, seatbelt usage, structural improvements of cars, etc.). Although the number of registered vehicles increased, the total amount of fatalities decreased during the same period. Thus it is now necessary to pay greater attention to the lateral accident situation in order to improve road safety and decrease the number of traffic injuries. Several European organisations had decided to launch the project SID2000, which was funded by the European Commission, with the intention of gathering more knowledge on injuries occurring in lateral accidents and the mechanisms that lead to such injuries. This should enable the group to define the requirements for a new side impact dummy (SID) to be designed. Within the same project the existing TNO-EUROSID 1 was enhanced by another group and the experience gained has now enabled allowed to design a better measuring device for side impacts. The data used for this contribution came from sources from all over Europe and had to be gathered in such a manner that as many accident parameters as possible were taken into account.