18th ESV Conference 2003
Filtern
Schlagworte
- Anfahrversuch (3)
- Impact test (veh) (3)
- Test method (3)
- Anthropometric dummy (2)
- Bemessung (2)
- Conference (2)
- Design (overall design) (2)
- Dummy (2)
- EU (2)
- Fahrzeuginnenraum (2)
Institut
- Abteilung Fahrzeugtechnik (6)
- Sonstige (3)
At the 2001 ESV-Conference the EEVC working group on compatibility (WG 15) reported the first phase of the research work to investigate the major factors influencing compatibility between passenger cars. Following this, WG15 performed an interim study, which was partly subventioned by the European Commission, the results of which are reported in this paper. In the next phase of work, it is intended to complete the development of a suite of test procedures and associated performance criteria to assess the compatibility of passenger cars in frontal impacts The main areas of work for the interim study were: - in depth accident data analysis - the development of methods to assess the potential benefit of improved compatibility - crash testing. The accident analysis identified the major compatibility problems to be poor structural interaction, stiffness mismatching and compartment strength. Different methods to assess the potential benefit of improved compatibility were applied to in depth accident data. Full scale crash testing including a car to car test was performed to help develop the following candidate compatibility test procedures: - a full width wall test with a deformable aluminium honeycomb face and a high resolution load cell wall - an offset barrier test with the EEVC barrier face and a high resolution load cell wall - an offset barrier test with the progressively deformable barrier (PDB) face. The results of the interim study will be presented in detail and the proposed methodology of the next phase to complete the development of a suite of test procedures for the assessment of car to car compatibility in frontal impacts will be outlined
When the EEVC proposed the full-scale side impact test procedure, it recommended that consideration should be given to an interior headform test in addition. This was to evaluate areas of contact not assessed by the dummy. EEVC Working Group 13 has been researching the parameters of a possible European headform test procedure in four phases. Earlier stages of the research have been presented at previous ESV conferences. The conclusions from these have suggested that the US free motion headform should be used in any European test procedure and that it should be a free flight test, not guided. This research has now culminated in proposals for a European test procedure. This paper presents the proposed EEVC side impact interior headform test procedure, giving the rationale for the test and the first results from the validation phase of the test protocol.
The development of tyre- and truck-manufacturers leads to the direction to introduce wide base single tyres (size 495/45R22,5) instead of twin tyres on the driving axle of trucks, tractors and busses. To study the driving behaviour and safety of various trucks and units with different tyre combinations and loading conditions was the aim of the study. A computer-aided simulation was used for this investigation. Drive tests with a 40 t unit with prototype single tyres on the drive axle were carried out to verify the simulation. Alterations in driving behaviour and driving safety are mainly dependent on the tyre cornering stiffness. The prototype wide single tyres had a higher lateral stiffness which leads to a higher degree of under-steering (safer driving behaviour). The altered spring base on the drive axle had no influence on the side- tilt stability of vehicle combinations but the solo truck profited from the higher rear axle roll stiffness (less danger for roll-over accidents). As far as the driving safety is concerned nothing speaks against wide base tyres on the drive axle. The simulation of a tyre defect in a bend (assuming 40% of the max. transferable side force for the flat tyre) showed no increased danger using wide single tyres. Later driving tests showed however the need of tyre run flat possibilities to avoid jack-knifing of road trains. Also tyre pressure monitoring systems and electronic stability programs for the trucks are advised.
The frontal crash is still an important contributor to deaths and serious injured resulting from road accidents in Europe. As the Hybrid-III dummy used in crash tests is over two decades old, the European Enhanced Vehicle-safety Committee is studying the potential for a new test device. Key is the availability of a well-defined set of requirements that identifies the minimum level of biofidelity required for an advanced frontal dummy. In this paper, a complete set of frontal impact biofidelity requirements, consisting of references , description of test conditions and corridors, is presented.
The Swedish National Road Administration (SNRA), the Japanese Automobile Research Institute (JARI) and the Federal Highway Research Institute (BASt) are co-operating in the International Harmonized Research Activities on Intelligent Transportation Systems (IHRA-ITS). Under this umbrella a joint study was conducted. The overall objective of this study was to contribute to the definition and validation of a "battery of tools" which enables a prediction and an assessment of changes in driver workload due to the use of in-vehicle information systems (IVIS) while driving. In this sense \"validation\" means to produce empirical evidence from which it can be concluded that these methods reliably discriminate between IVIS which differ in terms of relevant features of the HMI-design. Additionally these methods should also be sensitive to the task demands imposed on the driver by the traffic situation and their interactions with HMI-design. To achieve these goals experimental validation studies (on-road and in the simulator) were performed in Sweden, Germany and Japan. As a common element these studies focused on the secondary task methodology as an approach to the study of driver workload. In a joint German-Swedish on-road study the Peripheral Detection Task (PDT) was assessed with respect to its sensitivity to the complexity of traffic situations and effects of different types of navigation systems. Results show that the PDT performance of both the German and the Swedish subjects reflects the task demands of the traffic situations better than those of the IVIS. However, alternative explanations are possible which will be examined by further analyses. Results of this study are supplemented by the Japanese study where informational demands induced by various traffic situations were analysed by using a simple arithmetic task as a secondary task. Results of this study show that relatively large task demands can be expected even from simple traffic situations.