19th ESV Conference 2005
Filtern
Schlagworte
- Anfahrversuch (2)
- Anthropometric dummy (2)
- Bewertung (2)
- Dummy (2)
- Evaluation (assessment) (2)
- Forschungsarbeit (2)
- Frontalzusammenstoß (2)
- Injury (2)
- Passive safety system (2)
- Passives Sicherheitssystem (2)
Institut
- Abteilung Fahrzeugtechnik (3)
- Präsident (1)
- Sonstige (1)
The European Enhanced Vehicle-safety Committee (EEVC) Working Group 13 for Side Impact Protection has been developing an Interior Headform Test Procedure to complement the full-scale Side Impact Test Procedure for Europe and for the proposed IHRA test procedures. In real world accidents interior head contacts with severe head injuries still occur, which are not always observed in standard side impact tests with dummies. Thus a means is needed to encourage further progress in head protection. At the 2003 ESV-Conference EEVC Working Group 13 reported the results on Interior Headform Testing. Further research has been performed since and the test procedure has been improved. This paper gives an overview of its latest status. The paper presents new aspects which are included in the latest test procedure and the research work leading to these enhancements. One topic of improvement is the definition of the Free Motion Headform (FMH) impactor alignment procedure to provide guidelines to minimize excessive headform chin contact and to minimize potential variability. Research activities have also been carried out on the definition of reasonable approach head angles to avoid unrealistic test conditions. Further considerations have been given to the evaluation of head airbags, their potential benefits and a means of ensuring protection for occupants regardless of seating position and sitting height. The paper presents the research activities that have been made since the last ESV Conference in 2003 and the final proposal of the EEVC Headform Test Procedure.
The European Enhanced Vehicle-safety Committee wants to promote the use of more biofidelic child dummies and biomechanical based tolerance limits in regulatory and consumer testing. This study has investigated the feasibility and potential impact of Q-dummies and new injury criteria for child restraint system assessment in frontal impact. European accident statistics have been reviewed for all ECE-R44 CRS groups. For frontal impact, injury measures are recommended for the head, neck, chest and abdomen. Priority of body segment protection depends on the ECE-R44 group. The Q-dummy family is able to reflect these injuries, because of its biofidelity performance and measurement capabilities for these body segments. Currently, the Q0, Q1, Q1.5, Q3 and Q6 are available representing children of 0, 1, 1.5, 3 and 6 years old. These Q-dummies cover almost all dummy weight groups as defined in ECE-R44. Q10, representing a 10 year-old child, is under development. New child dummy injury criteria are under discussion in EEVC WG12. Therefore, the ECE-R44 criteria are assessed by comparing the existing P-dummies and new Q-dummies in ECE-R44 frontal impact sled tests. In total 300 tests covering 30 CRSs of almost all existing child seat categories are performed by 11 European organizations. From this benchmark study, it is concluded that the performance of the Q-dummy family is good with respect to repeatability of the measurement signals and the durability of the dummies. Applying ECE-R44 criteria, the first impression is that results for P- and Q-dummy are similar. For child seat evaluation the potential merits of the Q-dummy family lie in the extra measurement possibilities of these dummies and in the more biofidelic response.
Topics of this report are: Securing mobility and making mobility sustainable - Strategies for road safety: Safe behavior, Safe vehicles, Safe infrastructure, Telematics, International vehicle-engineering measures " Accident statistics " Accident research " Passive vehicle safety " Active vehicle safety " Driver assistance systems " Environmental protection through vehicle engineering.
The objective of European Enhanced Vehicle-safety Committee (EEVC) Working Group (WG) 15 Car Crash Compatibility and Frontal Impact is to develop a test procedure(s) with associated performance criteria and limits for car frontal impact compatibility. This work should lead to improved car to car frontal compatibility and self protection without decreasing the safety in other impact configurations such as impacts with car sides, trucks, and pedestrians. The WG consists of national government representatives who are supported by industrial advisers. The WG serves as a focal point for European research conducted by national and industry sponsored projects. The WG is responsible for collating the results from this research to achieve its objectives. EEVC WG 15 serves as a steering group for the car-to-car activities in the "Improvement of Vehicle Crash Compatibility through the Development of Crash Test Procedures"(VC-COMPAT) project partly funded by the European Commission. This paper presents a review of the current European research status. It also identifies current issues with candidate test procedures and lists the parameters that should be considered in assessing compatibility. The current candidate test procedures are: an offset barrier test with the progressive deformable barrier (PDB) face; a full width wall test with or without a deformable aluminium honeycomb face and a high resolution load cell wall; an offset barrier test with the EEVC barrier and load cell wall. These candidate test procedures must allow assessment of structural interaction, frontal force levels and compartment strength. The WG will report its findings to the EEVC Steering Committee and propose a test procedure in November 2006.