41 Bodenerkundung
Filtern
Dokumenttyp
Schlagworte
- Boden (2)
- Deutschland (2)
- Soil (2)
- Test (2)
- Versuch (2)
- Absorption (1)
- Administration (1)
- Air pollution (1)
- Air transport (1)
- Apparatus (measuring) (1)
Institut
This study aimed to better understand nitrate transport in the soil system in a part of the state of North Rhine-Westphalia, in Germany, and to aid in the development of groundwater protection plans. An advection-diffusion (AD) cell was used in a miscible displacement experiment setup to characterize nitrate transport in 12 different soil samples from the study area. The three nitrate sorption isotherms were tested to define the exact nitrate interaction with the soil matrix. Soils varied in their properties which in its turn explain the variations in nitrate transport rates. Soil texture and organic matter content showed to have the most important effect on nitrate recovery and retardation. The miscible displacement experiment indicated a decrease in retardation by increasing sand fraction, and an increase in retardation by increasing soil organic matter content. Soil samples with high sand fractions (up to 94 %) exhibited low nitrate sorption capacity of less than 10 %, while soils with high organic matter content showed higher sorption of about 30 %. Based on parameterization for nitrate transport equation, the pore water velocity for both sandy and loamy soils were significantly different (P < 0.001). Pore water velocity in sandy soil (about 4 x 10 high 3 m/s) was about 100 to 1000 larger than in loamy soils (8.7 x 10 high 5 m/s). On the other hand, the reduction in nitrate transport in soils associated with high organic matter was due to fine pore pathways clogged by fine organic colloids. It is expected that the existing micro-phobicity increased the nitrate recovery from 9 to 32 % resulting in maximum diffusion rates of about 3.5 x 10 high 5 m/s2 in sandy soils (sample number CS-04) and about 1.4 x 10 high 7 m/s2 in silt loam soils (sample number FS-02).
Im Zuge der Überarbeitung der DIN 18300 soll in Zukunft die bisherige Einstufung von Boden und Fels entsprechend des Zustands beim Lösen in Boden- und Felsklassen durch eine Einteilung entsprechend ihrem Zustand vor dem Lösen in Homogenbereiche ersetzt werden. Demnach müssen zukünftig für Boden andere Eigenschaften und Kennwerte ermittelt werden als für Fels. In der Baupraxis treten jedoch oftmals natürliche Übergangsbereiche zwischen Boden / Lockergestein und Fels / Festgestein auf. Für diese Übergangsbereiche fehlt ein geeignetes Kriterium für eine Zuordnung zu Boden oder Fels. Bei vorhergehenden Untersuchungen an bindigen Böden wurde einerseits festgestellt, dass der ermittelte Wassergehalt an der Schrumpfgrenze nicht geeignet ist zur Unterscheidung zwischen halbfester und fester Konsistenz. Andererseits war ebenso der einaxiale Druckversuch bedingt geeignet, da die Prüfkörper in vielen Fällen bei der Herstellung zerbrochen sind. Der daraufhin entwickelte Eindringversuch mittels Konusspitze und Proctornadel sollte im Rahmen der vorliegenden Forschungsarbeit an weiteren ungestörten Probekörpern am Übergangsbereich Boden / Fels erprobt werden. An über 25 Probekörpern aus unterschiedlichen geologischen Formationen Deutschlands, die aus Lagerstätten, im Rahmen von Bauprojekten sowie aus Rückstellproben vergangener Projekte gewonnen wurden, wurden neben den bodenmechanischen Parametern, insbesondere die Konsistenz, die einaxiale Druckfestigkeit und die Eindringkraft mittels Konusspitze und / oder Proctornadel ermittelt. Insgesamt war die Durchführung der Eindringversuche einfach. Im Gegensatz zu den einaxialen Druckversuchen waren auch bei leicht zerbrechlichen Proben, an denen aus diesem Grund keine einaxialen Druckversuche möglich waren, gerade noch Probekörper herstellbar. Damit kann der Eindringversuch als Alternative zum einaxialen Druckversuch Hinweise zur einaxialen Druckfestigkeit eines Boden- oder Gesteinskörpers liefern. Andererseits treten in der Praxis immer wieder Fälle auf, bei denen Böden und Gesteine im Übergangsbereich liegen, aber bereits so stark verwittert oder geschichtet sind, dass keine Prüfkörper hergestellt werden können, weder für Druck- noch für Eindringversuche. Für diese Übergangsbereiche müssten grundsätzlich andere Zuordnungswerte gefunden werden. Außerdem wird bei beiden Versuchsarten die Festigkeit des Einzelprobekörpers und nicht die des Gesteinsverbandes ermittelt. Die Auswertung der Laborversuche hat gezeigt, dass keine exakte Grenze zwischen Boden und Fels definiert werden kann. Vielmehr ist die Definition eines Übergangsbereiches erforderlich, für den sowohl Boden- als auch Felsparameter bestimmt werden müssen. Für Böden mit einer Konsistenzzahl von ca. lc > 1,15 müssen ergänzend Felsparameter ermittelt werden. Sofern der einaxiale Druckversuch nicht durchgeführt werden kann, kann auch mit dem Eindringversuch eine Abschätzung der einaxialen Druckfestigkeit erfolgen. Bei Festgesteinen bzw. Fels, bei denen eine einaxiale Druckfestigkeit von ca. qu< 1 MPa bzw. eine Eindringspannung von ca. σ20 < 10 MPa ermittelt wird, müssen neben den Felsparametern auch die Bodenkennwerte ermittelt werden. Der ermittelte Korrelationsansatz zwischen der Eindringspannung und der einaxialen Druckfestigkeit von σ20 ≈ 10 • qu ergibt sich hier näherungsweise aus den durchgeführten Eindring- und einaxialen Druckversuchen.
Anteile und zeitliche Verteilung von Oberflächenabfluss, Infiltration und Durchsickerung von Böschungen aus teilgesättigten Erddämmen infolge von Niederschlägen und Straßenabfluss sind bisher nur unzureichend bekannt. Für Straßenbauingenieure reicht das vorhandene Wissen über Wasser im Straßen-Erdbauwerk zur Beurteilung der Gebrauchstauglichkeit aus. Für die hydrologische Beurteilung der Durchsickerung im Hinblick auf den Boden- und Grundwasserschutz ist der heutige Wissensstand jedoch nicht ausreichend. Ziel des Projektes ist es, einen dringend benötigten Beitrag zur wirtschaftlichen und umweltverträglichen Verwertung von Ersatzbaustoffen im Erdbau zu leisten und bisher fehlende Beurteilungsmaßstäbe für den Boden- und Grundwasserschutz für die straßenbauspezifischen Gegebenheiten zu liefern. Zur Erreichung des Forschungsziels wurden in der Lysimeteranlage in Augsburg, Derchinger Straße, in acht Becken Böschungen eingebaut, die jeweils einen Ausschnitt aus einer Straßenböschung einschließlich eines Bankettstreifens darstellen. Zur Simulation von belastetem Bodenmaterial wurden dem Böschungsmaterial Schadstoffe zu dotiert. Zusätzlich wurden technische Sicherungsmaßnahmen eingebaut. Ergänzend zu den hydraulischen Größen Niederschlag, Menge von Sickerwasser und Oberflächenabfluss der Lysimeter wurden auch Konzentrationen der zu dotierten Schadstoffe (Cadmium, Kupfer und Cyanid} und weitere Parameter im Sickerwasser der Lysimeter und im Straßenabfluss bestimmt. Das dargestellte Projekt wurde gemeinsam durch die Hochschule Augsburg und die BASt von 2010 bis 2013 durchgeführt. Ein Anschlussprojekt ist derzeit in Bearbeitung.
Eine schadstoffverdächtige Auffüllung in einem ehemaligen Steinbruch für Dolomit und Kalkstein wurde mit geophysikalischen Verfahren der Gleichstromelektrik, Magnetik, Gesamtintensität mit Gradientenmessung und Refraktionsseismik auf Umgrenzung und Tiefe der Deponie untersucht, um die Eignung dieser Verfahren zur Erkundung von Altlasten zu erproben. Die elektrischen Tiefensondierungen haben einen deutlichen Kontrast zwischen der Auffüllung ergeben, der in der geoelektrischen Kartierung die Umrisse der Deponie deutlich macht. Der magnetische Kontrast zeigt die Deponie ebenfalls sehr deutlich, lässt aber keine Aussage über die Mächtigkeit zu. Die Deponiefläche fällt durch die zahlreichen magnetischen Extremwerte gegenüber der magnetisch relativ gleichbleibenden Umgebung auf. Refraktionsseismisch wurde der feste Fels gut erfasst. Die eingesetzten Verfahren sind somit bei verträglich wirtschaftlichem Aufwand und ohne Freisetzen von Schadstoffen gut geeignet, unbekannte Deponien aufzuspüren und ihren Umriss festzustellen.