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Influence of impact speed estimation errors  

on pedestrian fatality risk curves 
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Abstract – Recent findings from real-world accident data have shown that fatality risks for pedestrians are substantially 
lower than generally reported in the traffic safety literature. One of the keys to this insight has been the large and random 
sample of car-to-pedestrian crashes available in the German In-Depth Accident Study (GIDAS). Another key factor has been 
the proper use of weight factors in order to adjust for outcome-based sampling bias in the accident data. However, a third 
factor, a priori of unknown importance, has not yet been properly analysed. This is the influence of errors in impact speed 
estimation. In this study, we derived a statistical model of the impact speed errors for pedestrian accidents present in the 
GIDAS database. The error model was then applied to investigate the effect of the estimation error on the pedestrian fatality 
risk as a function of car impact speed. To this end, we applied a method known as the SIMulation-EXtrapolation (SIMEX) 
method. It was found that the risk curve is fairly tolerant to some amount of random measurement error, but that it does 
become flattened. It is therefore important that the accident investigations and reconstructions are of high quality to assure 
that systematic errors are minimised and that the random errors are under control.  
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1. INTRODUCTION 

In a previous study of the real-world accident data available in the GIDAS database we pointed out 
that pedestrian fatality risks have been largely exaggerated during the past decades [1]. A sequel 
review of the available literature on the subject clearly showed that previous results were generally 
based on data with a substantial bias towards severe and fatal accidents, thus explaining the 
excessively high fatality risks [2]. To exemplify, previous results had demonstrated that the risk of 
death for a pedestrian struck by a car at 50 km/h was between 40% and 90% [3–5], whereas the recent 
findings indicate a fatality risk of approximately 10% [1, 6, 7]. However, it is important to note that 
there is still a five-fold increase in fatality risk when impact speed increases from 30 km/h to 50 km/h. 
Hence, these new findings still supports the previous conclusions that speed should be as low as 
possible where car-to-pedestrian crashes are at risk. While the previous results claimed that impact 
speeds exceeding 60 km/h were practically un-survivable, the new findings shows that there is a large 
benefit in braking a car from, e.g., 80 km/h to 60 km/h. This could be achieved by manually or 
autonomously activated brake assist systems. The former have existed for several years, while the 
latter have reached the market this year. 

In both Refs. [2] and [6], the potential influence of estimation errors in impact speeds on fatality 
risk curves was pointed out. In this study, we aimed to quantify this influence by deriving an error 
model applicable to the car-to-pedestrian crashes in GIDAS and then applying the SIMulation-
EXtrapolation (SIMEX) method [8] to adjust for the estimation errors. 

3. METHODS 

3.1 Fatality risk curve 

The starting point of this study was the fatality risk curve of Ref. [1], which was derived from a 
sample of pedestrians aged 15 years and older that were struck by the front of a passenger car. 
Pedestrians that were lying on the ground prior to impact were excluded. This yielded a sample of 490 
pedestrian accidents, including 36 fatalities, from the GIDAS database from 1999 to 2007. Weight 
factors were derived by comparing to national statistics in order to adjust for sampling bias [9]. 
Logistic regression analysis was applied to the weighted sample in order to derive an analytical 
expression for the pedestrian fatality risk as a function of impact speed. The fatality risk (probability 
of death), P(v), was then assumed to have the following form (logistic regression) 
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where v is the impact speed in km/h and a, b, two parameters to be estimated by the method of 
maximum likelihood [10, 11]. In Ref. [1], it was found that 9.6−=a  and 090.0=b  (the risk curve 

with 95% confidence intervals is reproduced in Figures 2 and 4). This was the starting point of the 
present study. 

3.2 Estimation of impact speed in GIDAS 

GIDAS pedestrian accident reconstructions are primarily based on information collected at the 
accident site during the on-scene investigations. Securing of transient evidence, e.g., collision point, 
pedestrian and car end-positions, and brake marks, is essential for the quality of the reconstruction. 
Furthermore, on-scene investigations facilitate interviews with the driver, pedestrian and other eye-
witnesses. The choice of reconstruction method depends on the availability and reliability of the 
collected data [12]. 

In general, all reconstruction methods are based on the physical principles of conservation of 
momentum and energy (work-energy principle). An approximate car impact speed can be calculated 
from the energy dissipated by braking from the collision point to the car end-position. This estimate 
can be further improved by taking the pedestrian walking velocity together with the mass ratio of the 
car and pedestrian into account. When brake marks are absent, the pedestrian throw distance, defined 
as the distance between the collision point and the pedestrian end-position, can also be used to 
estimate the impact speed of the car. The throw distance can be divided into a flying phase and a 
gliding / rolling phase of the pedestrian over the ground. The length of each phase is influenced by the 
car impact speed, the car front-end shape, and if the car was braked or not at the time of collision. 
Therefore the usage of a validated multi-body model of the pedestrian and a 3D car shape in a 
simulation environment, e.g. PC Crash, is recommendable. Nevertheless, some generic relations 
between impact speed, throw distance, car front-end shape, and contact offset of the pedestrian along 
the front-end have been published based on experimental data [13–17]. It is noted that most of these 
experimental data were based on the front-end shapes of older car generations. Furthermore, recent 
research has shown that using the offset between pedestrian stature and the wrap around distance to 
the head contact point on the car (pedestrian gliding distance) does not provide reliable impact speeds 
[18]. The upper bound method combines the above mentioned methods to lower the uncertainty and 
also takes into consideration special restrictions and speed limitations due to environmental factors. At 
a last instance, witness statements can be used to validate data for the accident reconstruction.  

The following information was based on private communication with the persons responsible for 
reconstructions at the GIDAS centres in Dresden and Hanover: About 85% of the pedestrian accident 
reconstructions in GIDAS are based on the car brake distance and estimated deceleration (considering 
the coefficient of friction). Typically, for urban accidents with lower impact speeds, the pedestrian 
throw distance is either unknown or small compared to the size of the pedestrian, which makes a 
definition of the throw distance nearly impossible. Generally the reconstructions are conducted with 
use of PC Crash; most often with a rigid pedestrian model (DAT-file) and less often with a multi-body 
model. In about 10% of the accidents, the collision point and end-positions of pedestrian and car are 
available and reliable. The typical scenario for this is an accident in a rural region with higher car 
impact speed. Besides the car kinematics, also the pedestrian kinematics and the interaction with the 
car are analysed by using a multi-body model within PC Crash. In less than 5% of the accidents, the 
on-scene information is not sufficient for a detailed accident reconstruction. Examples are “hit and 
run” accidents or crashes with minor injury outcome, so that the accident site is already cleaned up at 
the arrival of the GIDAS investigation team. In these cases, impact speed estimations are primarily 
based on witness statements. 
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3.3 Estimation error in GIDAS 

The derivation of risk curves is sensitive to systematic errors in the impact speed estimations [19]. 
A systematic error towards higher or lower impact speeds would inevitably shift the risk curve to the 
right or left respectively. In order to run a small test on the plausibility of the GIDAS reconstructions, 
the median impact speed for fatalities in GIDAS has been compared to two other pedestrian real-world 
accident investigations [1]. In this comparison, it was found that the median was 57 km/h in the 
GIDAS database and between 50 km/h and 60 km/h in both an Australian accident database 

( 181fatal =N ) from 1981 and British in-depth data from the 1960s and 70s ( 81fatal =N ) [20, 21]. 

Hence, the median impact speeds for the fatally wounded pedestrians in these three large real-world 
accident studies are in accord with each other. This provides an indication that any systematic error in 
impact speed was small in these three databases, unless they were all biased the same way. 

To investigate the random error in the GIDAS speed estimations, we started by considering the 
case when brake marks from permanent or temporarily locked-up wheels are identifiable. The 
investigators should then strive to find the exact spot on the ground where the pedestrian was struck by 
the car and the car end-position. The distance between those two points, along the lines of the brake 
marks, is the relevant brake distance, d. Let us denote the estimated brake distance by 'd  and define 

the estimation error as ddd −≡∆ ' . Furthermore, denote the brake acceleration by a, the estimated 

brake acceleration by 'a , and then define the estimation error as aaa −≡∆ ' . (When skid marks are 

present, ga µ= , where µ  is the dynamic coefficient of friction and 282.9 smg = is the gravitational 

constant.) The true car impact speed is related to the brake distance and acceleration (deceleration) as 

adv 2=  (note that the absolute value of a must be used). The estimated impact speed would be 

calculated as ''2' dav = . The estimation error of impact speed is defined as vvv −≡∆ ' . (Note that the 

impact speed needs to be slightly adjusted in order to take the mass ratio of the car and pedestrian into 
account. However, this step infers only minor errors to the calculations and is therefore neglected in 
this example.) A simple calculation now yields that 
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where the last equality is approximately true when the errors in brake acceleration and distance are 

small, i.e., 1<<∆ aa  and 1<<∆ dd . (When the errors are not small, the last equality is a poor 

approximation and vv∆  can instead be simulated using the next to last expression.) From equation 

[2], it follows that the variance of vv∆  can be approximated by 

 

��
�

�
��
�

�
�
�

�
�
�

� ∆
+�

�

�
�
�

� ∆
≈�

�

�
�
�

� ∆

d

d

a

a

v

v
VarVar25.0Var .       [3] 

It is plausible to assume that the estimated brake acceleration, 'a , and distance, 'd , are normally 

distributed around the true values of brake acceleration, a, and distance, d. Furthermore, the size of the 
error likely increases with the true values of a and d. An optimistic assumption is that the standard 
deviations of the errors a∆  and d∆  equal 10% of the true brake acceleration and distance. This means 

that the estimated value of a will fall within plus minus 10% of the true value in 67% of the cases and 
within plus minus 20% of the true value in 95% of the cases. Since the standard deviation is defined as 

the square root of the variance, this gives that ( ) ( ) 01.0VarVar =∆=∆ ddaa . It then follows from 

equations [2] and [3] that v∆  is normally distributed around the true value of impact speed with 

variance ( ) 005.0Var =∆ vv . Hence, the standard deviation of v∆  becomes %7005.0 =  of the true 

impact speed, v. On the other hand, a pessimistic assumption would be that the standard deviations of 
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delta a∆  and d∆  are 20% of the true values of a and d. Equation [3] then implies that the standard 

deviation of v∆  is 14% of the true impact speed. (In this case 2.0=∆=∆ ddaa  which is not much 

smaller than 1. Hence, the final equality in equation [2] may be affected by higher order corrections. 

The interested reader can proceed by simulating vv∆  using the next to last equality in equation [2] to 

find that it is close to normally distributed with a standard deviation close to 14%.) Hence, in cases 
where brake marks are identifiable, the GIDAS teams are likely to provide impact speed estimations 
which are normally distributed around the true impact speed with a standard deviation substantially 
less than 15% of the true impact speed. 

When brake marks cannot be identified, the pedestrian injury pattern can be used to validate the car 
brake status at the initial pedestrian contact. The deceleration level is then set in accordance with 
environmental conditions and driver or witness statements. It is understood that the average error of 
the estimated impact speed is greater under these circumstances compared to when brake marks are 
identified, since both a and d will be more difficult to estimate. A realistic, but slightly pessimistic, 

assumption is that ( ) 09.0Var =∆ aa  (i.e., the standard deviation ( ) %30=∆ aaσ ) and 

( ) 04.0Var =∆ dd  (i.e., ( ) %20=∆ ddσ ), which gives that ( ) 0325.0Var =∆ vv  using equation [3]. 

Hence, the standard deviation of the estimation error is approximately 18% of the true impact speed. 

The pedestrian throw distance, if available, can also be used to estimate the car impact speed. 
Generally the error in the glide / roll distance of the pedestrian is similar to the error of the car brake 
distance. However, the coefficient of friction between the pedestrian and the ground may be difficult 
to estimate, depending on the present conditions. If air resistance is neglected it can be assumed that 
the horizontal velocity at the start of the flying phase is the same at the end of the flying phase, which 
is the input velocity for the gliding / rolling phase. The throw distance is most sensitive to errors when 
the throw angle is close to 0 or 90 degree, which can be shown by a Taylor series expansion of the 
error term. The actual calculations are similar to the case when brake marks are present, since the same 
principle of conservation of energy is applied. Nevertheless, the total amount of random estimation 
error is greater when pedestrian throw distance is used instead of car brake marks. Applying equation 

[3] with the reasonable assumptions ( ) 09.0Var =∆ aa  (i.e., ( ) %30=∆ aaσ ) and ( ) 04.0Var =∆ dd  

(i.e., ( ) %20=∆ ddσ )  gives ( ) 0325.0Var =∆ vv , which means that the standard deviation of the 

estimation error is approximately 18% of the true impact speed. (Simulation using the next to last 
expression in equation [2] confirms these findings.) 

When both car brake marks and the pedestrian throw distance are available, both methods can be 
applied with the aim to narrow the uncertainty of the estimated impact speed. Applying the upper 
bound method in these cases, the standard deviation of the estimation error is expected to be less than 
10% of the true impact speed. 

3.4 Error models 

From the considerations of section 3.2 and 3.3, it follows that the different reconstruction methods 
used by GIDAS all provide estimated impact speeds, w, that have a random error that is approximately 
normally distributed around the true (unknown) impact speed, v. Furthermore, the standard deviation 
of the random error is likely to, at least approximately, increase linearly with impact speed. In 
mathematical terms this leads to a multiplicative error model, which can be expressed as 

( )uvw += 1 ,           [4] 

where u is a random error term that is normally distributed with mean=0 and constant variance uVar  

(i.e. )Var,0(~ uNu ). The total estimation error is therefore )Var,0(~ 2
uvNvu . Hence, the standard 

deviation of the total error, vu, is linearly proportional to the true impact speed, ( ) uvvu Var=σ . 

From sections 3.2 and 3.3, uVar  depends on the choice of reconstruction method. However, on 
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average it is likely that uVar  should be around 0225.015.0 2 = , corresponding to a random error with 

a standard deviation equal to 15% of the true impact speed. We chose to proceed by using three 
different multiplicative error models in which the standard deviations were 10%, 20%, and 30% of the 

true impact speed, respectively. This corresponded to uVar =0.01, 0.04, and 0.09, respectively. See 

Table 1. Error model 1 was likely too optimistic and error model 3 too pessimistic. 

Note that the GIDAS database includes a variable named “VKPM”, which, according to the 
GIDAS code book, gives the tolerance of the impact speed estimate in km/h. This variable has been 
filled out by the Hanover centre since 1999 and by the Dresden centre since 2005. In total, 253 of the 
490 cases analysed in Ref. [1] had a given tolerance. In order to use the coded tolerance in a statistical 
analysis, its exact meaning was needed. One could possibly interpret the tolerance as giving a 95% 
confidence interval for the true impact speed, which would mean that the given tolerance equalled 

σ2 . However, such a statistical definition was not available, which made it difficult to use this 

variable in the present study. In nearly 80% of the cases, the tolerance was 5±  km/h or 10±  km/h. In 

some cases, the tolerance equalled the estimated impact speed, e.g., the impact speed was given as    
30 km/h and the tolerance as 30± km/h. This was likely due to miscoding. Removing these cases, it 

was found that the tolerance increased with impact speed up to about 15 km/h. Above 15 km/h, there 
was no association between the tolerance and the estimated impact speed. Hence, an additive error 
model would be the best choice at impact speeds above 15 km/h whereas a multiplicative model 
should be best at impact speeds up to 15 km/h. For that reason, the SIMEX analysis was carried out 
for three different additive models as well. In all three models, the estimation error was normally 
distributed around the true impact speed, and the standard deviation was 5 km/h, 10 km/h, and 15 
km/h respectively, see Table 1.  

To summarise, three models assumed a multiplicative error, which means that the standard 
deviation of the estimation error increased linearly with the true impact speed. The other three models 
assumed an additive error, which means that the standard deviation of the estimation error was 
constant for all impact speeds. For all models, the error was assumed to be normally distributed around 
the true impact speed. See Table 1. 

Table 1. Summary of error models. Note that v is the true, unknown, impact speed. 

Error model Standard deviation of random error, � 

Multiplicative error model 1 0.1v 

Multiplicative error model 2 0.2v 

Multiplicative error model 3 0.3v 

Additive error model 1 5 km/h 

Additive error model 2 10 km/h 

Additive error model 3 15 km/h 
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3.5 The SIMEX method 

The 490 accidents analysed in Ref. [1] provided equally many paired observations denoted by 

( )ii wy , , i=1,…, 490; where 1=iy  if pedestrian i died, 0=iy  if pedestrian i survived and iw  was the 

estimated car impact speed for the i:th accident. The true, unknown, impact speed is denoted by iv . 

The basic regression model that one would have liked to analyse for the 490 cases is 

( ) vbavy vv +== |1Pr logit ,         [5] 

where va  and vb  are the regression coefficients. It is convenient to introduce the vector ( )vvv ba ;=θ . 

Since only the estimated impact speeds, iw , and not the true impact speeds, iv , were available, the 

logistic regression model analysed in Ref. [1] was 

( ) wbawy ww +== |1Pr logit ,         [6] 

which resulted in ( )090.0;9.6−=wθ . In order to get an estimate of the “true” regression coefficients, 

vθ , the basic idea of the SIMEX method is now to add random error to the estimated impact speeds, 

iw , and study how the available regression coefficients, wθ , changes. It then uses a simple trick to 

estimate the effect of removing random error from the estimated impact speeds, iw . 

For the multiplicative error models (see Table 1), the SIMEX analysis starts by introducing a new 

random variable )(zWb  as 

( )zUwzW bb += 1)( ,          [7] 

with ( )ub NU Var,0~ , 50,...,1=b , and z a real number that determines the size of the added error. In 

this study, the following values of z were studied, z=0, 0.5, 1.0, 1.5, 2.0. (These particular values of b 

and z are standard in the literature [8].) The )(zWb  can be referred to as the remeasured impact speeds. 

Values of )(zWb  for each of the 490 observations and for each value of b and z were simulated using 

the statistical software SAS version 9.1.3. Note that wzWb == )0(  and that with v, u, and bU  

independent for all values of b 

( ) vvzWb =|)(E            [8] 

( ) ( )( )uub zvvzW Var11Var|)(Var 2 ++⋅= .       [9] 

From equation [9], it follows that the variance of )(zWb  increases with z. Furthermore, choosing z 

negative, the variance of )(zWb  becomes smaller than the variance of w (note that Var(w) = uv Var2 ). 

Hence, this can be interpreted as removing random error from w. For the particular choice of 

( )uz Var11 +−= , the variance of )(zWb  equals 0, which is a key property for the remeasured data. 

This means that the variable ( )( )ub zW Var11 +−=  should be representative for the true impact speed 

v when used in a logistic regression analysis. 

For the additive error models (see Table 1), the remeasured impact speeds are introduced as 

zUwzW bb +=)( , with ( )ub NU Var,0~  and b and z similar as for the multiplicative models. This 

gives that ( ) vvzWb =|)(E  and ( ) ( )zvvzW ub +⋅= 1Var|)(Var 2 . Hence, the variance of the remeasured 

impact speeds equals 0 at 1−=z . 
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The SIMEX method proceeds by analysing the following regression model: 

( ) )()(|1Pr logit zbWazWy bb +== ,        [10] 

for each value of b and z, thus providing 250550 =⋅  different estimates of the regression coefficients, 

henceforth denoted by )(zbθ . For each z, the average of the regression coefficients over b are 

calculated as  

�
=

=
50

1

Sim 50)()(
b

b zz θθ .          [11] 

Note that wz θθ == )0(Sim  and that, for the multiplicative models, ( )( )uz Var11Sim +−=θ  should give 

a representative estimate of vθ , which is what we want to find. (For the additive models, ( )1Sim −=zθ  

should provide this estimate.) However, from equation [7] it follows that negative values of z make 

)(zWb  complex valued. Since logistic regression analysis can not treat complex valued variables, the 

SIMEX method instead proceeds by interpolating )(Sim zθ  over z from 0=z  to 0.2=z  using linear 

and quadratic regression. The best model (in terms of adjusted 2
R ) is then used to extrapolate )(Sim zθ  

back to ( )uz Var11 +−=  for the multiplicative models and to 1−=z  for the additive models. This 

extrapolated value provides the final SIMEX estimate of vθ . 

The SIMEX method was conducted once for each error model. This means that the SIMEX 
estimate for multiplicative error model 1 provided an estimation of the true fatality risk curve if the 
estimations errors in GIDAS were correctly captured by that error model. The SIMEX estimates of the 
other error models should be interpreted analogously.  

4. RESULTS 

Before proceeding with the results, we recall that the variable z, introduced in equation [7], 
quantified the amount of random error added to the estimated impact speeds, w, in the GIDAS 

database. At z=0, no error was added, and the remeasured impact speeds, )(zWb , equaled the 

estimated impact speeds. When z increased, the amount of random error in the remeasured impact 
speeds increased. Choosing z negative could in a statistical sense be interpreted as removing random 
error from the estimated impact speeds, w. However, from equation [7], it followed that negative 
values of z implied complex values for the remeasured impact speeds, which is a remarkable feature. 
Nevertheless, at a certain negative value of z, the SIMEX method can be shown to provide an estimate 

of the regression coefficients a and b of equation [1] (or, equivalently, va  and vb  of equation [5]). 

Hence, the SIMEX method gives an estimate of what the parameters a and b would have been if there 
was no estimation error in the GIDAS database.  
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4.1 The multiplicative error models 

Figure 1 shows how the regression coefficients a and b in equation [10] varied with z for the three 
multiplicative error models. The best fit regression functions are also displayed in Figure 1. By 

extrapolating these regression functions back to ( )uz Var11 +−= , the final SIMEX estimates for va  

and vb  of equation [5] were found (see Figure 1). The corresponding risk functions are provided in 

Figure 2 together with the results of Ref. [1] (including its 95% confidence interval). It is clear from 
Figure 1 that a multiplicative estimation error which is normally distributed around the true impact 
speed implies too high values of the intercept coefficient a and too low values of the slope coefficient 
b. This means that such a random estimation error shifts the risk curve towards lower impact speeds 
and flattens it. From Figure 2, it can be seen that the net effect is to provide slightly too low fatality 
risks at higher impact speeds. 

Multiplicative error models: SIMEX for a
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Multiplicative error models: SIMEX for b
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Figure 1. Results from SIMEX analysis for regression parameters a (intercept) and b (slope) with multiplicative error models. 

Multiplicative error models: Risk curve comparison
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Figure 2. The blue, red, and green curves show the SIMEX estimations of the true fatality risk adjusting for the multiplicative 
error models described in Section 3.4 (see Table 1). The solid black curve shows the results of Ref. [1] that used the original 
GIDAS data (dashed curves give 95% confidence intervals). 

 



9 

4.2 The additive error models 

Figure 3 shows how the regression coefficients a and b in equation [10] varied with z for the three 
additive error models. The best fit regression functions are also displayed in Figure 3. By extrapolating 

these regression functions back to 1−=z , the final SIMEX estimates for va  and vb  were found (see 

Figure 3). The corresponding risk functions are provided in Figure 4 together with the results of Ref. 
[1] (including its 95% confidence interval). It is clear from Figure 3 that an additive estimation error 
which is normally distributed around the true impact speed implies too high values of the intercept 
coefficient a and too low values of the slope coefficient b. This means that such a random estimation 
error shifts the risk curve towards lower impact speeds and flattens it. From Figure 4, it can be seen 
that the net effect is to provide slightly too low fatality risks at higher impact speeds. Qualitatively, this 
is exactly the same effect as that of multiplicative random errors (see Section 4.1). 

Additive error models: SIMEX for a
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Additive error models: SIMEX for b
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Figure 3. Results from SIMEX analysis for regression parameters a (intercept) and b (slope) with additive error models. 
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Figure 4. The blue, red, and green curves show the SIMEX estimations of the true fatality risk adjusting for the additive error 
models described in Section 3.4 (see Table 1). The solid black curve shows the results of Ref. [1] that used the original 
GIDAS data (dashed curves give 95% confidence intervals). 
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5. DISCUSSION 

In this study, different models for the estimation error of impact speed in the GIDAS database were 
investigated. Three models assumed a multiplicative error, which means that the standard deviation of 
the estimation error increased linearly with the true impact speed. The other three models assumed an 
additive error, which means that the standard deviation of the estimation error was constant for all 
impact speeds. For all models, the error was assumed to be normally distributed around the true impact 
speed. The multiplicative models were based on an analysis of the GIDAS reconstruction 

methodology, see Sections 3.2 and 3.3. In error model 1, the standard deviation, σ , of the random 

error was 10% of the true impact speed ( v1.0=σ ). Furthermore, v2.0=σ  in error model 2 and 

v3.0=σ  in error model 3. Note that 67% of the observations drawn from a normal distribution fall 

within plus minus one standard deviation (i.e., σ±v  in this study) and 95% of the observations fall 

within σ2±v . Hence, taking error model 1 as an example, this means that at a true impact speed of 

50 km/h, the estimated impact speed in GIDAS would have 67% probability to fall within 45–55 km/h 
and 95% probability to fall within 40–60 km/h. Our investigations in Sections 3.3 and 3.4 suggested 
that different reconstruction methods lead to different estimation errors, but that on average the 
estimation error in GIDAS was best captured by either multiplicative model 1 or 2. Nevertheless, the 
tolerance levels given in the GIDAS database suggested that an additive model was more appropriate 
at impact speeds exceeding 15 km/h, see Section 3.4. This is in line with the theoretical discussion in 
Section 3.2, that with higher impact speeds more reliable evidence can be collected from the accident 
site, which leads to an improved quality of the reconstruction. Therefore, three additive models were 
studied as well, in which the standard deviation of the estimation error was 5 km/h, 10 km/h, and 15 
km/h, respectively. 

Using the SIMEX method, the pedestrian fatality risk as a function of car impact speed (which was 
derived in Ref. [1]) was adjusted to take the modelled estimation error into account. It can be seen 

from Figures 2 and 4 that the multiplicative model with v1.0=σ  gave similar results as the additive 

model with 5=σ km/h. The multiplicative model with v2.0=σ  gave results comparable to the 

additive model with 10=σ km/h. Finally, the multiplicative model with v3.0=σ  gave similar results 

as the additive model with 15=σ km/h. This shows that the qualitative choice of either a 

multiplicative or additive error model did not have a decisive effect on the results. Let us therefore 
proceed by discussing, e.g., the multiplicative models: Figure 2 shows that if multiplicative error 

model 1 ( v1.0=σ ) is correct, the true risk curve is likely to lie close to the curve of Ref. [1]. If error 

model 2 ( v2.0=σ ) is correct, the true risk curve should still lie within the 95% confidence interval of 

Ref. [1]. For all error models, the true risk curve is likely to lie close to the curve of Ref. [1] at impact 
speeds up to 50 km/h. However, at higher impact speeds an adjustment towards higher fatality risks 
may be motivated. The exact amount of adjustment depends on the size and nature of the estimation 
error in the data. 

Based on these findings, the risk curve of Ref. [1] should provide an accurate description of 
pedestrian fatality risks up to 50 km/h, but the true risk curve may be slightly steeper at higher impact 
speeds. These results emphasize the importance of high quality accident reconstructions in order to 
keep the estimation error of impact speed under control. 

Injury risk curves typically follow a logistic distribution function also for other injury levels and for 
other road traffic casualties than pedestrians. Furthermore, reconstruction methods for vehicle-to-
vehicle collisions are based on the same physical principles as car-to-pedestrian crashes. Thus, the 
qualitative findings of this study can probably be generalised to injury risk curves for other road traffic 
casualties.  

6. LIMITATIONS 

The SIMEX method is a tool that can be used to study the effect of error in input data for logistic 
regression models. It is important to note that it does not provide the absolute truth. Furthermore, a key 
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input to the SIMEX analysis was a statistical description of the estimation error present in the input 
data, i.e., the GIDAS database in this study. As pointed out in Section 3.3, different reconstruction 
methods lead to different estimation errors. Hence, using one and the same error model to capture the 
average estimation error may be a too simplified approach. And even if such an approach is justified, it 
is quite likely that a multiplicative error model underestimates the error at very low impact speeds and 
overestimates it at very high impact speeds, and vice versa for an additive model. Furthermore, our 
assumptions regarding the amount of error involved in the estimations of car brake distance and 
deceleration, and pedestrian throw distance and deceleration were mainly based on our own 
experience and common sense instead of observational studies of the GIDAS reconstructions. Finally, 
our way to apply the SIMEX method for a multiplicative error model is new and has not been 
critically reviewed.  

7. CONCLUSIONS 

Car impact speeds estimated from accident reconstructions comprise a certain amount of error. This 
estimation error has two components: a systematic error and a random error. In this study, the random 
error was described using both multiplicative and additive error models with different assumptions for 
the magnitude. Qualitatively, it was found that fatality risk curves for pedestrians are flattened by 
random estimation error. In particular, the risk becomes too low at higher impact speeds. The 
flattening effect increased with the size of the error. These findings may be generalised to injury risk 
curves and to other road traffic casualties as well. It is therefore important that accident investigations 
and reconstructions are of high quality to assure that systematic errors are minimised and that the 
random errors are under control. For car-to-pedestrian crashes, the GIDAS database is likely to have 
only a minor systematic error, while the amount of random error should have a standard deviation less 
than 15% of the true impact speed. Under these assumptions, it was found that the fatality risk curve 
derived from the GIDAS database in Ref. [1] is reliable at impact speeds below 50 km/h. At higher 
impact speeds, a slight modification of the risk curve towards higher fatality risks may be motivated.  
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