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Abstract

Empirical vehicle crashworthiness studies are

usually based on national or in-depth traffic

accident surveys: Data on accident-involved

cars/drivers are analysed in order to quantify the

chance of driver injury and to assess certain risk

factors like car make and model. As the cars/drivers

involved in the same accident form a ‘cluster’,

where the size of the cluster equals the number of

accident-involved parties, traffic accident survey

data are typical multi-level data with accidents as

first-level or primary and cars/drivers as second-

level or secondary units (car occupants in general

are to be considered as third level units).

Consequently, appropriate statistical multi-level

models are to be used for driver injury risk

estimation purposes as these models properly

account for the cluster structure of traffic accident

survey data. In recent years various types of

regression models for clustered data have been

developed in the statistical sciences. This paper

presents multi-level statistical models, which are

generally applicable for vehicle crashworthiness

assessment in the sense that data on single and

multiple car crashes can be analysed

simultaneously. As a special case of multi-level

modelling driver injury risk estimation based on

paired-by-collision car/driver data is considered. It

is demonstrated that assessment results may be

seriously biased, if the cluster structure inherent in

traffic accident survey data is erroneously ignored

in the data analysis stage.

Introduction

Vehicle crashworthiness, i.e. the ability of a vehicle

to protect its own occupants in collisions, is an

important research subject in the traffic safety

sciences. It is, of course, a theoretical concept

which can be specified in several different ways.

Basically, vehicle crashworthiness is to be

measured by occupant injury risk given accident

involvement. However, as injury information may

not necessarily be available for all occupants of

accident-involved vehicles, crashworthiness is

frequently quantified simply by driver injury risk: the

higher the driver’s probability to be injured, the

lower the vehicle’s crashworthiness.

The injury status of accident-involved drivers is

affected by many characteristics of the driver and

his or her vehicle. In addition, factors like collision

speed, mass of opponent vehicle and so forth play

an important role. Among the numerous

determinants of driver injury risk, the risk factor

‘make and model of the car driven’ is of special and

sometimes even primary interest. The latter will, for

instance, be the case in car safety rating based on

real-world crash data. Although this paper focuses

on the assessment of car make and model as a

determinant of driver injury, the methods presented

here can easily be transferred to the analysis of any

other risk factor of interest.

Investigations in vehicle crashworthiness may be

viewed as special cases of epidemiological studies

as they deal with the distribution and determinants

of a specific ‘disease’ (=injury due to accident

involvement) in a specific human population

(=accident-involved car drivers). Descriptive

crashworthiness analyses are conducted in order to

estimate the average safety level of different car

models; the results of such analyses may, for

instance, be of interest for the motor car insurance

industry. Analytical (also termed ‘aetiological’)

studies designed to measure the partial effect of car

make and model on driver injury risk preferably

correspond to the car buyer’s perspective.

Partially based on results of the SARAC project [1]

the following topics are treated in the sequel:

• Estimating absolute and comparative chance of

driver injury for cars grouped by make and

model.

• Testing association between risk factor car make

and model and criterion variable car driver injury

status (crashworthiness comparisons between

different groups of cars).

• Measuring comparative chance of car driver

injury in the case of multi-level data (random

effects probit and fixed effects logit models).

• Adjustment of group-specific injury risk rates for

third variables (confounding factors).
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• Paired-by-collision car/driver data as a special

case of multi-level traffic accident data.

The paper gives an overview of elementary and

more advanced statistical methods for vehicle

crashworthiness assessment taking explicitely

account of the multi-level structure of traffic

accident data. The assessment of vehicle

aggressivity defined as the degree to which injury is

inflicted upon occupants of the vehicle or road user

with which the ‘subject’ car crashes will not be

treated here.

Basic Concepts

Accident survey as the basic study type for

crashworthiness investigations

Empirical crashworthiness investigations belong to

the class of observational studies: data are

collected on real-world accidents and accident-

involved cars which provide information on car

make and model and car driver injury status but

also on third variables which might affect driver

injury risk. Typically, a certain traffic accident

survey1 is the data source and thus the study

design of a crashworthiness investigation may be

characterized as an ex-post-facto approach. 

In many practical situations these surveys will have

been conducted by a national statistical office and

thus the accident survey under consideration will

frequently be a complete census in the sense that

all police-recorded accidents are contained in the

database. In some cases, however, the empirical

data may have the character of a sample, e.g. when

they have been collected in a local or regional in-

depth accident investigation under a specific

sampling plan. As usually for each accident

recorded in the survey empirical data on all

accident-involved cars are collected, a traffic

accident survey normally is a cluster survey with

accidents as primary and accident-involved cars as

secondary units.

Surveys are referred to as cross-sectional

investigations when they provide data for a limited

study period. In the case of traffic accident surveys,

however, the system of data collection can

frequently be considered as a permanent survey.

Therefore, incidence2 of injury (number of cases of

injury within a specified period of time) caused by

traffic accidents may be measured for consecutive

time periods (e.g. weeks, months or years). 

Measuring the risk factor car make and model

In epidemiology3 any potential determinant of the

disease under study is termed risk factor. In the

context of crashworthiness assessment, of course,

car make and model is the risk factor of primary

interest. It is important to note that ‘car make and

model’ is a theoretical construct which needs to be

specified carefully. Obviously, one may consider car

make and model as a complex attribute of a vehicle

summarising all its physical and design properties.

In this case vehicle characteristics like length, mass

and body style of car are already ‘contained’ in the

vehicle attribute car make and model. When the

above concept is applied, it would make no sense

to consider crashworthiness as a function of car

make and model and mass of car, as car mass is

simply one of the constituent properties of a given

car model.4 Under such a perspective the car mass

effect on crashworthiness (mass of the ‘subject’ or

‘focus’ car itself, not mass of the opponent car!)

simply cannot be separated from the effect of car

make and model.

Alternatively, car make and model may be

considered as an attribute characterising only the

car’s design properties and secondary safety

fittings. In this case the car’s purely physical

properties like length and mass could be assumed
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1 In addition to surveys, so-called case-control studies are also

widely used retrospective observational types of

investigation. As case-control study is always based on two

different samples, one sample of ‘cases” (persons with a

specific disease) and a second sample of ‘controls” (persons

without the disease). These two groups are compared with

regard to the risk factor. From a methodological point of view

surveys are normally preferred to case-control studies,

especially when the survey is a representative sample from

the population of interest or even a complete census. It will,

however, be shown later in this paper that it might well be

advantageous to build a database from a standard traffic

accident survey which formally corresponds to the database

of a so-called matched case-control study.

2 In epidemiological studies, in addition to incidence one is

often also interested in the prevalence of a certain disease

(number of existing cases of disease at a particular point in

time). As accidents are events in time and space and not

objects or subjects (like patients), the concept of prevalence

does not apply to crashworthiness investigations.

3 The basic concepts and methods of epidemiology are

presented here following [2].

4 For instance, when drugs A, B,... are compared in clinical

trials it is not common to consider the amount of a certain

active substance contained in the drugs as a separate

variable. Consequently, no adjustments or corrections for

this variable are made.



to be separate determinants of vehicle safety. Such

a concept might be useful if car make and model is

defined in the broader sense of ‘car model group’

such that cars belonging to the same model group

may differ in mass (variation of vehicle mass within

car model group). However, even if we assume car

mass and car model group to represent different

aspects of a vehicle, it is clear that car mass is

largely determined by car make and model. As this

dependency may be considered as a causal

relationship (‘the vehicle is heavy because it is a

Mercedes S class’), it is at least questionable

whether driver injury risk should be adjusted for

mass effects in order to measure the pure effect of

the car’s structure, design and secondary safety

fittings on occupant protection.

Obviously, the risk factor car make and model is a

categorical variable. The main purpose of vehicle

crashworthiness assessment is to estimate an

appropriate index of crashworthiness for each

category of cars. In the simplest case only two

categories are distinguished. In this situation one

often speaks of ‘subject’ car model (e.g. VW Golf 4)

and ‘other’ car model (e.g. not VW Golf 4)

corresponding to the usual ‘exposed/unexposed’

dichotomy. Sometimes, however, we may

explicitely consider several different car models

which means that the risk factor under

consideration has a whole set of possible

categorical (i.e. unordered) outcomes. It is not

uncommon to distinguish up to about 150 different

car models in a single crashworthiness study.

Measuring car occupant injury status

Vehicle crashworthiness has been defined as the

ability of a car to avoid injury to its own occupants

in collisions. Thus, occupant injury status is the

dependent or criterion variable of any

crashworthiness study. ‘Injury’, of course, may be

measured in quite different ways ranging from

coarse classifications based on police reports to

rather complex injury scales (AIS, ISS). Ideally, one

would like to have a clinical definition of what is

meant by ‘injury’ which can be tested by objective

evidence. In many practical situations, however, the

vehicle safety analyst has to rely on police reports

or insurance files, where the validity and

consistency of diagnostic criteria is at least

questionable.

One could, of course, decide to use mortality (death

due to crash involvement) as the criterion variable.

This, however, would result in a significant

reduction in the number of cases of ‘injury’ to be

found in the population of accident-involved car

occupants. Therefore, one usually moves further

down the hierarchy of severity of injury:

• died,

• hospitalized,

• diagnosed or self-reported accidental injury.

Statistical analysis of driver injury risk is

considerably simplified if the crude binary attribute

‘driver injured: yes/no’ is used to describe accident

outcome. One can, however, also distinguish

several (ordered) levels of injury severity ranging

from ‘uninjured’ to ‘killed’ in the case of police-

recorded data or from AIS 0 to AIS 6 when in-depth

data are available.

It should be noted that crashworthiness

assessment results may depend on the accident

outcome measure adopted. Therefore, careful

consideration of the injury status variable used is

necessary when comparing different vehicle safety

assessment approaches. As already stated above,

vehicle crashworthiness is frequently measured

simply by car driver injury. Only in a few studies

both driver and (front) passenger injury is

considered. Not surprisingly, the choice of the

accident outcome variable is often dictated by data

availability. 

Measuring the chance of driver injury

incidence

Vehicle crashworthiness assessment aims at

evaluating the chance that an accident-involved

driver of a certain car model (the ‘subject’ car

model) is injured. The most basic epidemiological

measure is the risk of injury, i.e. the probability of an

accident-involved driver being injured given that he

or she drives a ‘subject’ car. Like in other fields of

safety research, however, various alternative risk

concepts are applicable in vehicle crashworthiness

studies (absolute and relative risk, odds and odds

ratio). 

Classical methods for estimating risk measures

from survey data are based on the assumption that

the study units (in our case accident-involved

vehicles/drivers) have been selected by simple

random sampling. In the following chapter it will be

demonstrated that this assumption is by no means

valid in crashworthiness studies. Rather, the study
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units are grouped or clustered in a natural way. This

characteristic property of empirical traffic accident

data calls for specific methods of risk estimation.

Crashworthiness Assessment Based

on Multi-Level Car/Driver Data from

Traffic Acident Surveys – The General

Case

Multi-level structure of the population at risk

In studies on vehicle crashworthiness the universe

of accident-involved cars or, more precisely, the

universe of ‘accident involvements of cars’ has to

be considered as the population at risk. Of course,

this population must as usual be well defined with

respect to factual, spatial, and temporal

characteristics. It is important to note that the

elements of the population at risk are neither fixed

subjects nor objects but rather events occurring in

time and space.

Obviously, a collision of two cars corresponds to

two different accident involvements of cars which,

however, refer to the same accident. In this

situation one may speak of ‘paired-by-collision

vehicle/driver data’. More generally, it can be said

that the population at risk has a multi-level structure

with accidents (single and multiple vehicle

accidents) as first-level units, accident-involved

vehicles as second-level units and occupants of

accident-involved vehicles as third-level units. The

first level units, i.e. the accidents, may be

considered as clusters of accident-involved cars

where the size of the cluster (1, 2, 3,…)

corresponds to the number of parties involved in

the crash. This multi-level or cluster structure of the

population at risk must be taken into account in any

methodologically sound crashworthiness

investigation. 

As a prerequisite for vehicle crashworthiness

assessment, information on the following

characteristics is needed for each selected element

of the population at risk, i.e. for each accident-

involved car in the sample:

• injury status of car driver (criterion variable),

• make and model of car (risk factor to be

assessed),

• other factors which might affect the criterion

variable (concomitant variables).

Risk and relative risk of car driver injury

The purpose of crashworthiness assessment is to

evaluate the chance of car driver injury in case of

an accident. An appropriate quantitative measure is

the risk of car driver injury, i.e. the probability of the

car driver being injured given that the car belongs to

a particular group of vehicles (‘subject’ car model

or, more generally, group of ‘exposed’ study units).

The risk of car driver injury (also termed absolute

risk) describes the relationship between a specific

car make and model and car driver injury status.

This, however, is not sufficient for assessing the risk

factor to injury outcome. 

As in other fields of evaluation research a

comparison group is required which, for instance,

may be the group of accident-involved cars which

do not belong to the car model category under

consideration (‘other’ car model or, more generally,

group of ‘unexposed’ study units). This leads to the

definition of relative risk as the ratio of injury risk for

the drivers of a particular car model to the injury risk

for the drivers belonging to the comparison group.

When several different car models are considered

simultaneously, one category is chosen to be the

base or reference category and the analyst

compares all other categories to this base.

Odds and odds ratio of car driver injury

However, risk as a probability is not the only

possibility of specifying ‘chance’. An alternative

specification is called the odds. The odds measure

the number of times accidental injury occurs

relative to the number of times it does not. The odds

can be calculated for different groups of

vehicle/driver units. In car safety rating one is

interested in the ratio of the odds for a particular car

model to the odds of a comparison group which, for

instance, may consist of all other car models. The

corresponding measure is called odds ratio. 

It is important to note that in epidemiology and other

fields of applied statistics researchers take ‘odds’

and ‘odds ratio’ to refer to the chance of disease

(accidental injury) incidence just as they do ‘risk’ and

‘relative risk’. In practice, the odds as such are rarely

of interest, and the odds ratio is generally quoted

alone. In vehicle crashworthiness studies one can, of

course, think of several alternative ways to measure

car driver injury risk. Clearly, however, only

statistically sound concepts of specifying ‘chance’ of

occupant injury are acceptable. Careful

interpretation of the risk measure used is necessary.
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Relative risk and odds ratio as measures of

association between car make and model and

car driver injury

It should be stressed again that the relative risk and

the odds ratio are meaningful measures of

association between risk factor car make and

model and car driver injury. Both quantities

measure the relative chance of driver injury for a

particular subject car model, compared to a certain

base category or reference group of cars: if the

crashworthiness of the subject car model does not

differ from the crashworthiness of the reference

group of cars, one can expext the relative risk and

the odds ratio to be around unity (corresponding to

‘no association’ between risk factor and driver injury

status).

As crashworthiness assessment normally aims at

some ranking of car models, it can be said that the

calculation of the relative risk and the odds ratio is

fundamental to any car safety rating system.

Obviously, both the relative risk and the odds ratio

have to be estimated from empirical data collected

in accident surveys. Subsequently, it will be shown

that due to the specific nature of the population at

risk (clustering of study units) the classical

approaches to measuring relative chance of driver

injury are not suitable.

Estimating relative risks and odds ratios in the

case of multi-level data 

Why the classical (unmatched) approach is not

appropriate 

According to epidemiological standards a given

categorical risk factor is assessed by computing a

95% confidence interval for the population value of

the relative risk or the odds ratio (subject car model

compared to reference car model). If the confidence

interval does contain unity, one concludes that the

risk factor car model has no effect on driver injury.

If the lower (upper) limit of the confidence interval is

above (below) unity, one concludes that the injury

risk for subject car model drivers is higher (lower)

compared to the reference group of cars. For

computational details see [2], Chapter 3.

The classical approach outlined above assumes

that a simple random sample of units has been

drawn from the population at risk. Under simple

random sampling the sample inclusion probability

of a specific unit a is not affected by the drawing of

some other unit b from the population. This,

however, is not the case in vehicle crashworthiness

studies due to the multi-level structure of the

population. If, for instance, one car involved in a

specific two-car accident is in the sample, the

second car involved in the same accident will

automatically be also in the sample. Thus, for any

two-car crash the corresponding accident

involvements of cars (say car 1 and car 2) must be

considered as a ‘cluster’ in the sense that –

irrespective of car make and model – the injury

status of the two drivers is not independent: if driver

1 is injured (uninjured), driver 2 also tends to be

injured (uninjured) for obvious reasons. The same

argument holds for accidents where more than two

vehicles (more generally: ‘parties’) were involved. 

Risk factor assessment based on multi-level

models

As there is a known clustering within the accident

involvement data, a multi-level model will be

appropriate for assessing the risk factor car make

and model. In the context of crashworthiness

assessment multi-level modelling means that

regression models with accident-specific

parameters are used. These accident-specific

parameters which sometimes are also called

‘effects’ may be assumed to be fixed or random. 

If the driver injury status variable is binary, the fixed

effects logit model or the random effects probit

model can be applied with driver injury status as the

dependent and risk factor status (car make and

model) as the explanatory variable. See, for

instance, [3] and [4]. As usual, the different

categories of car make and model are represented

by dummy variables in the logit or probit model.

From these models one obtains point and interval

estimates of the relative chance of driver injury for

one or more ‘subject’ car models compared to a

given ‘reference’ car model. In contrast to the

classical approach these estimates account for the

clustering within the accident involvement data.

Another substantial advantage of these models is

that additional variables can be included thus

adjusting risk estimates for confounding factors.

Subsequently, the random effects probit model is

briefly described.

Let accidents be labelled by the index i(i=1,…,n)

and the cars within accident i by the index where

j(j=1, ..., mi) where mi=1, 2, 3,... . Then, for the

observable dichotomous driver injury status

variable, i.e. for the dependent variable
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a probit model with random effects could be

developed, the structure of which is

where

is a non-observable (‘latent’) continuos variable to

be interpreted, for instance, as a combined index of

strength and effect of the forces acting upon driver

j in accident i. If this index exceeds a certain

threshold value (zero), the event ‘driver is injured’

will be observed. The latent variable is assumed to

depend on a set of indicator variables χijk
(k=1, 2, …) attaining the value 1 or 0 if category k

of the risk factor car make and model is present or

not present at the j-th car within the i-th accident

and a random error term

uij=ai + εij

consisting of an accident-specific random

component ai and a purely random component εij.
As can be seen, ai allows for random variation of

the latent variable at the accident level, whereas εij
accounts for random effects at the car/driver level.

Regarding the random effect ai it is assumed that

this variable is normally distributed with mean 0 and

variance . As usual it is assumed that the

component εij is normally distributed with mean 0
and variance .

The above variance component model implies that

for any given accident i the latent variables 

(j=1,... mi) and thus the observed injury outcomes of

the drivers involved in the same accident are

positively correlated with correlation coefficient 

. This property makes the model

suitable for analysing clustered data as is the case

in crashworthiness assessment.

Using empirical crash involvement data (n

accidents, accident-involved cars/ 

drivers) one can estimate by the maximum

likelihood method 

• the model constant µ

• the parameters βk associated with the different

categories of the risk factor car make and model

and

• the coefficient of correlation γ.

By definition, the parameter associated with the

reference car model category is equal to zero.

Therefore, a positive (negative) sign of βk indicates

that the accident consequences are more (less)

severe for drivers of car model category k

compared to drivers of the reference group of cars.

As the standard errors of the parameter estimates

can be estimated, it is possible to compute

confidence intervals and to test hypotheses about

the parameters and thus hypotheses about the

crashworthiness of different car models.

Models of the type outlined above can be estimated

using appropriate statistical software. The author

has estimated random effects probit models by

means of LIMDEP procedure PROBIT in a mobility

behaviour study (car use of persons within

households as a function of characteristics of the

person and the household). See [5]. The problem

structure in crashworthiness studies is quite similar

(injury of drivers within accidents as a function of

characteristics of the car/driver and the accident). 

It appears that the estimation of the relative chance

of driver injury may lead to erroneous results if the

clustering within the accident involvement data is

not taken into account in the data analysis stage.

This will be shown in the following chapter, where a

practical example is presented. To the author’s

knowledge, general multi-level models of the type

described above have not yet been applied in

vehicle crashworthiness assessment using at the

same time data on single car, two-car and multiple

car accidents. However, for the important special

case of two-car accident data (‘paired-by-collision

vehicle/driver data’) examples of multi-level models

can already be found in the literature which will be

quoted later.

Crashworthiness Assessment Based

on Paired-by-Collision Car/Driver Data

Rationale for using two-car accident data only

Several existing vehicle safety rating methods5

restrict themselves to analysing data on two-car

accidents only. From a methodological point of view
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this approach may be interpreted as a so-called

‘matched pairs design’ frequently encountered in

epidemiological studies. Typically, the restriction to

two-car accidents is to minimise distortion which

would be caused to the estimates of driver injury

risk if, for instance, a particular car model had a

high proportion of collisions with much larger

vehicles such as lorries or busses. As will be seen

below there are, however, even more convincing

arguments in favour of the use of paired-by-collision

car/driver data for crashworthiness assessment

purposes.

As already stated above the restriction to two-car

accidents corresponds to a matched pairs design

(also termed ‘1:1 matching’ or ‘pair matching’): the

cars involved in the same accident are considered

as a single matched pair rather than two

independent observations. Considering pairs of

cars has the advantage of high internal validity6

since all observed and unobserved (!)

characteristics of the accident itself (time, location,

weather conditions etc.) are the same for both

accident-involved cars and, therefore, these

characteristics cannot account for possible

differences in the injury risk of the two drivers

involved in the accident. Consequently,

‘confounding’ is reduced and the ‘pure’ effect of car

make and model on the chance of car driver injury

can be measured more precisely. 

Another very attractive feature of the matched pairs

design is that it can equally been applied to

accident databases with and without damage-only

accidents. This is because accidents where both

drivers are not injured or both drivers are injured

(so-called concordant pairs) tell nothing about the

relative risk of driver injury (subject car model

compared to other car model). Practically all in-

depth accident databases and many police-

recorded accident data sets do not cover accidents

with material damage only. In all these cases it is

obviously not possible to estimate the absolute risk

of driver injury because a substantial part of the

accident-involved non-injured drivers is missing in

the accident database. All one can do is to estimate

the comparative chance of driver injury which can

best be accomplished under a matched pairs

design.

When adjustment for confounding is made at the

design stage of the study by choosing the concept

of matched pairs, this must be taken into account in

the stage of data analysis. A matched pairs study

requires a matched pairs analysis, which can be

more complex both to understand and compute.

See [2], Chapter 6, for a general presentation. For

statistical details of matched studies in vehicle

safety research see [1]. As an example of proper

application of matched pairs analysis methods

(conditional logistic regression models for paired

data) in the context of estimating the comparative

chance of driver injury see [7].

The decision on the statistical method to be used

for data analysis depends on the answers to the

following questions:

• Is the assessment of the risk factor under

consideration to be made without or with

adjustment for confounding car- and driver-

specific7 variables?

• Is driver injury status a binary variable or is it

measured on an ordinal scale with several

levels?

• Are we mainly interested in testing association

between risk factor and driver injury?

• Is estimation of the comparative chance of driver

injury a main concern of the study?

Depending on study purposes and scaling of the

variables, the statistical tool box offers various

methods for vehicle crashworthiness assessment in

the case of paired-by-collision car/driver data. 

The candidate approaches can be broadly

classified into statistical models with population-

averaged and models with accident-specific

parameters. The two approaches differ in the way

of modelling the dependence between the injury

status of the two-car drivers belonging to the same

accident. The first approach leads to the class of

log-linear models of driver injury in two-car
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5 A detailed description of existing car safety rating methods

can be found in a specific SARAC report prepared by the

author. See [6]. It can be said that all safety rating methods

described in this report ignore the clustering of car/driver

data.

6 Obviously, the external validity of vehicle crashworthiness

assessment is reduced by analysing paired-by-collision

car/driver data only, since a substantial part of the population

of all accident involvements of cars (especially single car

crashes, crashes against freight transport vehicles etc.) is

ruled out. As the severity of these crashes tends to be above

average, this is an obvious weakness of the matched pairs

design.

7 Adjustment for accident-specific covariates is automatically

made due to matching.



accidents, the second preferably to so-called fixed

effects models of driver injury for cars/drivers

matched in pairs. 

In various fields of applied statistics fixed effects

models proved to be well suited for analysing

matched pairs data, especially data from matched

case-control or matched cohort studies. It turnes

out that this is also valid for crashworthiness

studies based on two-car accident data.

Crashworthiness assessment without

adjustment for car- and driver-specific

variables

When no adjustment for confounders is to be made,

paired car/driver data can always be displayed in a

square two-dimensional contingency table, where

the two dimensions of the table (rows and columns,

respectively) correspond to the two accident-

involved cars/drivers. If driver injury status as well

as car make and model are binary variables, a 2x2

table will arise. For the construction of this 2x2 table

two different possibilities of crosstabulating

accidents exist:

• Matched cohort study design: Accidents by

injury status of subject car driver (rows) and

injury status of other car driver (columns).

• Matched case-control study design: Accidents

by car make and model of injured driver (rows)

and car make and model of uninjured driver

(columns).

The null hypothesis of no association between the

risk factor car make and model and the criterion

variable car driver injury status can be tested using

a so-called symmetry test. When dealing with 2x2

tables McNemar’s test will normally be appropriate. 

When more than two levels of driver injury are to be

distinguished, the matched cohort design is

appropriate. If more than two categories of car

models are to be assessed, the matched case-

control design with injured drivers as cases and

uninjured drivers as controls is to be chosen by the

analyst. In both situations the empirical accident

frequency data can be displayed in rxr tables. For

rxr tables Bouwker’s test is the appropriate

statistical method for testing the hypothesis of no

association. 

For matched studies the odds ratio is the generally

accepted measure of comparative chance of driver

injury (injury odds for subject car driver divided by

injury odds for other car driver). Under a matched

pairs design the odds ratio can be estimated from

the corresponding 2x2 table. It turns out that for

paired data the estimate of the odds ratio8 only

depends on the two off-diagonal elements of the

2x2 table9. The corresponding estimate is often

termed matched odds ratio. When under a matched

case-control study design several car models are to

be distinguished, the empirical accident frequency

data are displayed in a rxr table. In this situation 

the odds ratio can be calculated for all

combinations of car models (e.g. combinations A/B,

A/C and B/C when three car models A, B, C are

considered). 

Under a matched design confidence intervals for

the population value of the odds ratio can be

computed using the F-distribution. It is important to

note, that the choice of the odds ratio estimate

(matched odds ratio versus cross-product ratio)

does not only affect the confidence interval but also

the point estimate of the driver injury odds ratio.

When pairing is ignored, the odds ratio estimate

may be seriously biased. See the example below.

Crashworthiness assessment with adjustment

for car- and driver-specific variables

When the adjusted odds ratio for the risk factor car

make and model is of interest (adjustment for

confounding car- and driver-specific variables), the

above analysis of two-dimensional contingency

tables is no longer appropriate. Rather, specific

regression models for car driver injury status are

needed which in addition to the risk factor also

contain confounding factors as explanatory

variables. The classical logistic regression model,

of course, is not suitable as the injury status of the

two drivers involved in the same accident can never
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8 Maximum likelihood estimate under the fixed effects logit

model (model with accident-specific parameters accounting

for the pairing of units).

9 Under an unmatched design the proper estimate of the odds

ratio is the so-called ‘cross-product ratio” defined as the

product of the two main diagonal elements divided by the

product of the two off-diagonal elements. For 2x2 tables the

cross-product ratio is the maximum likelihood estimate of the

odds ratio under the classical logistic regression model

(model with population-averaged parameters). This model is

suitable when no pairing of units is present in the data set.

The latter would, for instance, be the case if for some reason

only single car accidents are to be analysed. In this situation

rows would correspond to car models (subject/other) and

columns to driver injury status (injured/uninjured).



be regarded as two independent variables. Rather,

the two-level structure of the data (level 1:

accidents; level 2: accident-involved cars/drivers)

must be taken into account. 

Among several alternative stochastic models the

fixed effects logit model appears to be most suitable

for the statistical analysis of paired-by-collision

car/driver data, especially when theoretical as well

as practical considerations play a role. In order to

obtain empirical estimates of the regression

parameters and estimates of the corresponding

(adjusted) odds ratios one can transform the fixed

effects logit model in a certain way (called

‘conditioning out accident-specific fixed effects’)

leading to the so-called conditional logistic

regression model for matched pairs data. This

model can be estimated using standard logistic

regression software. Very briefly, the method for

estimating the parameters associated with the

categories of the risk factor car make and model

and the parameters associated with the

confounding factors can be described as follows:

• Eliminate all accidents from the data set where

injury status of the two drivers does not differ.

• Create difference scores for all car- and driver-

specific covariates (value for car 1 minus value

for car 2).

• Use maximum likelihood to estimate the logistic

regression predicting injury status of driver of

car 1 with the difference scores as predictor

variables in a model with no intercept.

Finally, it is stressed again that from paired

car/driver data one cannot estimate the absolute

risk of driver injury but only the comparative chance

of driver injury. This, however, is completely

sufficient in many situations, especially in vehicle

safety studies aiming at a ranking of various car

models with respect to crashworthiness. 

Practical examples of driver injury odds ratio

estimation based on paired-by-collision

car/driver data

Description of the empirical database

Subsequently, two different car models, say car

model A and car model B10, are distinguished and

driver injury status is measured by the binary

variable ‘driver injured yes/no’. As only car-to-car

crashes are considered, each cluster consists of

exactly two members (accident-involved cars). If in

each two-car accident one car is arbitrarily labelled

as ‘car 1’ and the other as ‘car 2’, one obtains 16

different subpopulations of accidents. 

Table111 shows these subpopulations. The sizes of

the 16 subpopulations which are also given in the

table have been taken from German road traffic

accident statistics 1998-2002 (car model A=Golf 2,

car model B=Golf 3). As one can see, in total 3973

two-car accidents were registered by police, where

a model A car collided with a model B car (‘A/B

crashes’) or where cars of the same make and

model crashed (‘A/A crashes’ and ‘B/B crashes’,

respectively). 

It will be shown how the driver injury odds ratio for

car model A compared to car model B can be

estimated taking account of the fact that the

cars/drivers in the sample are paired by collision. At

first, however, an analysis is presented where the

clustering (pairing) of study units is erroneously

ignored. 

Odds ratio estimation ignoring the clustering in the

sample of accident-involved cars/drivers 

If the clustering in the sample of accident-involved

cars is not taken into account, every single

accident-involved car (there are 2x3973=7946 such

cars in the sample) is treated as an individual study

unit. Since for every car the binary variables ‘car

make and model (A/B)’ and ‘car driver injury

(yes/no)’ have been recorded, we may generate

from Table 1 Table 2 as 2x2 contingency table

corresponding to an unmatched cohort study

design.

From Table 2 one obtains the following driver injury

risk estimates for car model A and car model B

(group-specific absolute risks):

Thus, the estimated relative risk of drivers of car

model B (subject car model) compared to car model

A (reference car model) is given by

Instead of the two group-specific risks one could

calculate the corresponding group-specific driver
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10 Car model B may not necessarily be a specific car model.

Rather, it may also be interpreted as ‘not car model A. 

11 In this scheme the guilty party is referred to as car 1.



injury odds as well to obtain the estimated driver

injury odds ratio (cross-product ratio), comparing

car model B to car model A:

As can be seen, both the estimated relative risk and

the odds ratio estimate are very close to unity.

Thus, from an analysis ignoring clustering the

conclusion would be drawn that the subject car

model B has the same level of crashworthiness as

the reference car model A. 

Statistical calculations (based on a logarithmic

transformation of the two measures of comparative

chance to obtain a better approximation by the

normal distribution) lead to the result that the

population value of the relative risk and the odds

ratio does not differ from unity. For instance, the

95% confidence interval for the odds ratio ranges

from 0.8789 to 1.0603.

Clearly, the above analysis would be meaningful if

the m=7946 cars in the sample were independently

drawn from the population of all cars that are

involved in two-car crashes (A/B, A/A and B/B

crashes). This, however, is obviously not the case

as always pairs of cars are drawn. Consequently,

any methodologically sound analysis must explicitly

observe that the database actually is a sample of

n= 3973 pairs of cars. If clustering is properly taken

into account, it appears that the passive safety

levels of the two car models under consideration

are by no means identical. Rather, the

crashworthiness level of car model B is significantly

higher than the corresponding safety level of car

model A.

Matched pairs analysis without adjustment for

concomitant variables

If every matched pair of accident-involved cars is

treated as a single study unit, one can build from

Table 1 for each of the two possible matched study

designs the corresponding 2x2 contingency table

which forms the basis of a matched analysis. It

becomes evident that in contrast to the above

(unmatched) analysis where all subpopulations of

accidents were considered, only 8 out of the 16

subpopulations of accidents are relevant in a

matched analysis.
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Table 1: Empirical database of two-car accidents

No.
Make and model Driver injury Relevance of subpopulation for matched analysis Number of

accidents in

samplecar 1 car 2 car 1 car 2 Matched cohort design Matched case-control design

1 A A yes yes 137

2 A A yes no X 107

3 A A no yes X 368

4 A A no no 548

5 A B yes yes X 114

6 A B yes no XX XX 77

7 A B no yes XX XX 273

8 A B no no X 427

9 B A yes yes X 76

10 B A yes no XX XX 46

11 B A no yes XX XX 306

12 B A no no X 368

13 B B yes yes 152

14 B B yes no X 81

15 B B no yes X 375

16 B B no no 518

Total 3973

Legend: X=subpopulation of concordant pairs (not relevant), XX=subpopulation of discordant pairs (relevant)

Table 2: Crosstabulation ignoring the pairing of accident-

involved cars/drivers

Make and model of car
Car driver injured?

Total
yes no

Model A (‘other’) 1322 2685 4007

Model B (‘subject’) 1269 2670 3939

Total 2591 5355 7946



Let as before car model B be the subject car model.

Then, under the matched cohort study design

(Design I) one obtains Table 3 2x2 table.

Under the matched case-control study design

(Design II) with injured drivers as cases and

uninjured drivers as controls, the 2x2 table looks

like Table 4.

It appears, that under Design i the 2x2 table

contains 1687 of the 3973 accidents (i.e. 42.5% of

all crashes). Under Design II the table shows the 

2-dimensional distribution of 1633 accidents (or

41.1% of all crashes). Obviously, as compared with

an unmatched study of two-car accidents where

every single accident-involved car (there are

2x3973=7946 such cars) is treated as an individual

study unit, the concept of pairing leads to smaller

numbers of observations.

Although the above contingency tables for Design

i and Design II are not identical, exactly the same

conclusions about the relative chance of driver

injury can be drawn from the two tables. The main

result is obtained by calculating the matched odds

ratio, i.e. the estimate of the odds ratio in the 

case of paired data. According to a well-known

theorem (sometimes called the fundamental

theorem of epidemiology) the matched odds ratio

takes on the same numerical value under both

matched designs: 

Since 1 – 0.8329=0.1671, the main conclusion is

that being the driver of a model B car will reduce the

chance of injury by approximately 17% compared to

a model A car. As an appropriate statistical test

(McNemar’s test) shows, the null hypothesis of ‘no

association between car make and model and car

driver injury’ can be rejected at the 2 percent level. 

Thus, it becomes evident that when pairing of

accident-involved cars is properly taken into

account the superiority of car model B compared to

car model A is statistically proven. If pairing is

erroneously ignored, one does not come to this

conclusion. Obviously, the disregard of the multi-

level data structure leads to biased vehicle

crashworthiness assessment results.

Matched pairs analysis with adjustment for

concomitant variables

In the case of paired car/driver data, the driver

injury odds ratio can be adjusted for concomitant

variables like gender of car driver and/or mass of

opponent car by using fixed effects regression

models. If, for instance, the driver’s injury status

(driver injured yes/no) is assumed to be a function

of the car model driven and the driver’s gender, one

can estimate an appropriate fixed effects logistic

regression model. As a result one obtains the

‘gender-adjusted’ driver injury odds ratio estimate

for the subject car model compared to the reference

car model. The fixed effects logistic regression

model may also be used to adjust the driver injury

odds ratio simultaneously for several concomitant

variables (e.g. driver injury odds ratio adjusted for

driver age and opponent vehicle mass). Similarly,

more than two car model categories can be

considered.

The fixed effects logit model has been applied to

empirical two-car accident data from the German

traffic accident statistics. In the results reported

below driver injury status is a binary variable

defined as ‘severely injured or killed yes/no’. To

keep the example simple, the risk factor car make

and model was also considered to be a binary

variable defined as ‘Golf-3 yes/no’. The odds ratio

for the risk factor has been estimated both without

and with adjustment for confounding factors using

the LOGISTIC procedure of the SAS system. To

illustrate the application of the fixed effects logit

model a vehicle characteristic (opponent car mass

in kg) and a driver characteristic (driver gender)

have been selected as covariates from a larger set

of possible confounders. For details see [1].

Based on a sample of n=27250 two-car accidents

where exactly one driver was injured (matched
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Table 3: Contingency table under the matched cohort study 

design (Design I)

Model B car

driver injured?

Model A car driver injured?
Total

yes no

yes 190 319 509

no 383 795 1178

Total 573 1114 1687

Table 4: Contingency table under the case-control study 

design (Design II)

Car model of

injured driver

Car model of uninjured driver
Total

Model B Model A

Model B 456 319 775

Model A 383 475 858

Total 839 794 1633



case-control design) the unadjusted odds ratio for

covariate ‘Golf-3 yes/no’ was estimated at12

with 95 percent confidence limits 0.734 and 0.852

(so-called Wald confidence limits). This means that

compared to other cars the driver injury odds for

Golf-3 is about 21 percent lower (1–0.791=0.209).

In view of this result Golf-3 can be assessed as

‘significantly safer than other cars’. 

As Table 5 shows, the estimated odds ratio for the

risk factor car make and model decreases if in

addition to car make and model other covariates

are included in the fixed effects logit model. The

difference between the unadjusted (regression

model M1) and the adjusted odds ratio (regression

models M2 and M3), however, is not statistically

significant since the corresponding confidence

intervals overlap.

The estimation results for the fixed effects logit

model M3 yield an adjusted odds ratio for the risk

factor of 0.707. This can be interpreted as follows:

(i) given that the opponent car has the same mass

as the Golf-3 and (ii) given that the two car drivers

have the same gender, the chance of being injured

is for Golf-3 drivers 29 percent lower (1–0.707=

0.293) than for drivers of other car models. In M3

the upper confidence interval limit (UCL) is far

below unity (0.773). Therefore, the crash

performance of the Golf-3 can be considered as

significantly better than the performance of other

car models. For each of the three regression

models the confidence interval for the odds ratio

related to the risk factor is given in Table 5. As the

three confidence intervals overlap, the

crashworthiness assessment of Golf-3 does not

substantially change after adjustment for the factors

‘driver gender’ and ‘mass of opponent car’.

There may, however, be covariates where the

unadjusted and adjusted odds ratio differ

significantly. Among other things Table 5 shows that

the estimated odds ratio for the covariate ‘driver

gender’ equals 0.48013 if one only adjusts for car

make and model (regression model M2), but is

equal to 0.539 if, in addition, adjustment is made

also for mass of opponent car (regression model

M3). Looking at the confidence intervals it can be

concluded that the adjusted odds ratio is different

from the unadjusted. The absolute difference

between the two values is, however, rather small

(0.539–0.480=0.059). As driver gender and

opponent car mass are largely independent

determinants of driver injury status, this result is not

surprising. 

Finally, it should be noted that in the regression

models M2 and M3 the coefficients and thus the

odds ratios for the various determinants of driver

injury status are estimated with quite different levels

of accuracy. As the relative lengths of the

confidence intervals (length of interval divided by

midpoint of interval) show, the estimation of the

coefficient for mass of opponent car is by far the

most accurate. According to M3, it is almost certain

(confidence level 95 percent) that colliding with a

‘heavier’ car rather than with a ‘lighter’ car (mass

difference 100 kg) increases the driver’s odds of

being injured between 27.7 and 30.2 percent.

Alternative statistical models of driver injury

for paired-by-collision car/driver data

In empirical crashworthiness studies where data on

cars/drivers matched in pairs are to be analysed

and where car driver injury status is the criterion

variable of interest, the fixed effects logit model is

certainly an appropriate statistical tool. This is

because the model

• has a sound theoretical basis,

• is relatively easy to understand and to handle

also for non-statisticians and

• can be estimated using standard statistical

software. 
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Table 5: Odds ratio estimates obtained from the fixed effects

logit model

Fixed effects logit model of diver injury

Model Covariate(s)
Odds ratio for covariate Relative

length of

CI1)LCL Estimate UCL

M1 Golf-3 yes/no .734 .791 .852 .149

M2
Golf-3 yes/no

Male driver yes/no

.700

.462

.756

.480

.816

.498

.153

.075

M3

Golf-3 yes/no

Male driver yes/no

Mass of opponent

car (100 kg)

.647

.515

1.277

.707

.539 

1.289

.773

.565 

1.302

.178

.093

.019

1) Relative length of confidence interval=(UCL–LCL)/Estimate

12 In this example Golf-3 is compared with all other car models,

not only with Golf-2 as was the case in the previous example.

13 Being a male driver reduces injury odds by 52% compared to

female drivers.



As can be expected, however, various alternatives

to the fixed effects logit model are available. The

choice between these alternative models mainly

depends on the scaling of the dependent variable

car driver injury status. Subsequently, some of the

candidate regression models are mentioned briefly

without going into any methodological detail.

Driver injury status as a binary variable

When driver injury status is a binary variable (injury

yes/no) random effects models of the logit and

probit type can be considered as alternatives to the

fixed effects logit model. See [4], p. 837-849, and

[8], p. 62-70. Another alternative to be mentioned is

the bivariate logit model with covariates describing

not only the accident but also the two cars and

drivers involved in the accident. This model was

first proposed by [9]. It should be noted here that

bivariate modelling approaches where only

accident-specific (but no car- and driver-specific)

covariates can be incorporated, are not really useful

for crashworthiness assessment purposes. This is

the reason why, for instance, the bivariate logit

model derived from the log-linear model (see, for

instance, [10], p. 223-225) is not suitable in our

context. 

Finally, the Bradley-Terry model developed for

paired comparisons is another candidate modelling

approach. See [4], p. 270-276, [11], p. 102-103, and

[12]. In the SARAC 2 project this model has been

applied to two-car accident data [13] .

Driver injury status as a variable with several

ordered levels

When driver injury status is measured on an ordinal

scale (e.g. uninjured, slightly injured, severely

injured, killed or, alternatively, AIS 0 to 6) the fixed

effects cumulative logit model can be applied to

assess the role of the various car and driver

characteristics as determinants of driver injury. For

a software-oriented description see [8], p. 70-74. 

As can be expected, the proper application of the

various models mentioned above requires deeper

knowledge of statistical theory and more

specialised software.
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