Anhang zu:

Analyse des gefügeabhängigen Löslichkeitsverhaltens potenziell AKR-empfindlicher Gesteinskörnungen

von

Frank Weise Tyler Oesch Gerd Wilsch Sandra Sigmund

Bundesanstalt für Materialforschung und -prüfung Berlin

> Klaus-Jürgen Hünger Mario Kositz

Brandenburgische Technische Universität Cottbus - Senftenberg

Berichte der Bundesanstalt für Straßenwesen

Straßenbau Heft S 165

Anlage A0

Oberflächenanalyse mit 3D-CT

Inhalt

1 Einzelergebnisse der Gesteinskörnung 1 (Kies)	2
2 Einzelergebnisse der Gesteinskörnung 2 (Festgestein)	4
3 Einzelergebnisse der Gesteinskörnung 3 (Festgestein)	5
4 Einzelergebnisse der Gesteinskörnung 4 (Kies)	6

Seite 2 von 7 Seiten

1 Einzelergebnisse der Gesteinskörnung 1 (Kies)

 Tabelle 1a:
 Ergebnisse der CT-Analyse der Einzelkörner

		Masse des Einzelkorns	Bezeichnung des CT- Datensatzes	Voxel- größe	mit CT ermittelte Oberflächenanteile [m ²]						
Art der Gesteins-	Gesteins- art				von außen nicht	Mantel-	von außen	Mantelfläche + von außen zugängliche Risse/Poren			
körnung		[9]		[µm]	zugängliche Risse/Poren	fläche	Risse/Poren	absolut [m²]	relativ [m²/g]		
		3,37	7030		0,00056923	0,002173208	2,20081E-05	0,00217974	0,00064681		
		4,49	7031		0,00014234	0,001104776	6,20294E-05	0,00111859	0,00024913		
		2,89	7032		3,8461E-05	0,001437842	9,65339E-05	0,00147124	0,00050908		
		5,63	7033		3,9438E-06	0,000950219	1,42877E-06	0,00095047	0,00016882		
	Quarz/ Quarzit	6,26	7034	16.5	0,00110262	0,001548634	0,000145648	0,0015719	0,0002511		
		8,04	7035	10,5	0,00091299	0,002390072	0,003239185	0,00279296	0,00034738		
		7,33	7036		0,0002617	0,001946314	0,000188292	0,001972	0,00026903		
		8,32	7037		0,00233061	0,00237686	0,000852948	0,00247938	0,000298		
		6,50	7038		3,6364E-05	0,001837151	2,89402E-06	0,0018376	0,00028271		
GK1 (Kios)		11,17	7039		0,00030956	0,002094667	0,000370813	0,00212786	0,0001905		
GRT (Ries)		0,77	6880		0	0,00051814	0	0,00051814	0,00067291		
		0,74	6881		8,5979E-06	0,00048672	1,714E-06	0,00048844	0,00066005		
		1,27	6882		0,00015914	0,0007504	7,0653E-05	0,00082105	0,0006465		
		1,24	6883		0,00065517	0,00097767	0,00048686	0,00146454	0,00118108		
	Rhyolith	1,96	6884	11.2	9,5661E-06	0,00083243	1,4876E-05	0,0008473	0,0004323		
		1,16	6885	11,2	1,2983E-06	0,00056536	1,3317E-06	0,00056669	0,00048853		
		2,90	6886		8,6336E-05	0,00121277	3,2844E-05	0,00124561	0,00042952		
		2,74	6887		0,00017918	0,00120407	3,3545E-05	0,00123761	0,00045168		
		2,85	6888		3,668E-05	0,00103193	1,7967E-05	0,00104989	0,00036838		
		5,70	6889		6,3769E-05	0,00162105	3,8096E-06	0,00162486	0,00028506		

Anlage A0

Seite 3 von 7 Seiten

 Tabelle 2b:
 Ergebnisse der CT-Analyse der Einzelkörner

	Gesteins-	Masse des Einzelkorns [g]	Bezeichnung des CT- Datensatzes	Voxel- größe [µm]	mit CT ermittelte Oberflächenanteile [m ²]						
Art der Gesteins-					von außen nicht	Mantel-	von außen	Mantelfläche + von außen zugängliche Risse/Poren			
körnung					zugängliche Risse/Poren	fläche	Risse/Poren	absolut [m²]	relativ [m²/g]		
		2,43	6970		0,00012058	0,00092356	1,1697E-05	0,000935262	0,00038488		
		1,50	6971		0,00015725	0,00090284	0,000363516	0,00126636	0,00084424		
		1,62	6972		4,5284E-05	0,00067417	9,4948E-06	0,000683663	0,00042201		
		2,09	6973		0,00021169	0,00471586	0,000971337	0,005687202	0,00272115		
GK1 (Kies)	Plutonit	2,67	6974	11.2	0,00122655	0,00107341	0,000226376	0,001299787	0,00048681		
	1 Idtornit	1,96	6975	11,2	0,00034572	0,0008526	0,000101506	0,000954109	0,00048679		
		5,58	6976		0,00165919	0,00343411	0,002353983	0,005788088	0,00103729		
		2,47	6977		0,00035817	0,00100399	7,83496E-05	0,001082342	0,0004382		
		4,08	6978		0,00073965	0,00164543	0,000267424	0,001912849	0,00046884		
		4,44	6979		0	0,00123892	9,90976E-08	0,001239022	0,00027906		

Seite 4 von 7 Seiten

2 Einzelergebnisse der Gesteinskörnung 2 (Festgestein)

 Tabelle 2a:
 Ergebnisse der CT-Analyse der Einzelkörner

				Voxel- größe	mit CT ermittelte Oberflächenanteile [m ²]						
Art der Gesteins- körnung	Gesteins- art	Masse des Einzelkorns	Bezeichnung des CT-		von außen nicht	Mantel-	von außen	Mantelfläche + von außen zugängliche Risse/Poren			
		[9]	Datensatzes	[µm]	zugängliche Risse/Poren	fläche	Risse/Poren	absolut [m²]	relativ [m²/g]		
		1,03	6860		2,9378E-07	0,00053102	2,66761E-06	0,000533687	0,00051814		
		1,12	6861	11 0	5,8706E-08	0,00062262	0	0,000622616	0,00055591		
		0,66	6862		7,6719E-07	0,00047354	8,47724E-07	0,000474391	0,00071877		
		2,23	6863		2,5866E-07	0,00091449	5,48675E-07	0,000915042	0,00041033		
GK2	Grauwacke	2,04	6864		0	0,00095469	3,03314E-07	0,000954995	0,00046813		
(Festgestein)	Clauwacke	1,9	6865	11,2	0	0,00097825	1,71727E-06	0,000979963	0,00051577		
		1,39	6866		1,139E-07	0,00072072	0	0,000720719	0,0005185		
		1,08	6867		0	0,00072582	1,48019E-07	0,000725968	0,00067219		
	-	2,11	6868		9,985E-08	0,00102792	6,28454E-07	0,001028552	0,00048747		
		3,98	6869		4,9172E-08	0,00160807	1,20523E-06	0,001609278	0,00040434		

Seite 5 von 7 Seiten

3 Einzelergebnisse der Gesteinskörnung 3 (Festgestein)

 Tabelle 3a:
 Ergebnisse der CT-Analyse der Einzelkörner

	Gesteins- art	Masse des Einzelkorns	Bezeichnung des CT-	Voxel- größe	mit CT ermittelte Oberflächenanteile [m ²]						
Art der Gesteins- körnung					von außen nicht	Mantel-	von außen	Mantelfläche + von außen zugängliche Risse/Poren			
		[9]	Datensatzes	[µm]	zugängliche Risse/Poren	fläche	Risse/Poren	absolut [m²]	relativ [m²/g]		
		1,53	6890		5,1412E-06	0,00089981	1,85941E-05	0,000918407	0,00060027		
		1,66	6891		4,5193E-07	0,00091221	8,53558E-06	0,000920748	0,00055467		
		2,68	6892		6,1779E-06	0,00131594	4,15666E-05	0,001357503	0,00050653		
		2,56	6893		6,9222E-06	0,0011275	2,93486E-05	0,001156851	0,0004519		
GK3	Rhyolith	2,89	6894	16.5	1,3558E-07	0,0013042	1,24271E-05	0,001316629	0,00045558		
(Festgestein)	Tanyonan	3,08	6895	10,0	4,4192E-06	0,00124032	6,88139E-06	0,001247203	0,00040494		
		5,18	6896		7,9715E-07	0,00197001	6,97341E-06	0,001976983	0,00038166		
		3,44	6897		9,3834E-06	0,00141833	2,2061E-05	0,001440392	0,00041872		
		5,07	6898		1,4369E-06	0,00195684	6,57484E-06	0,001963413	0,00038726		
		3,47	6899		8,6902E-07	0,00149594	3,58717E-06	0,001499525	0,00043214		

Seite 6 von 7 Seiten

4 Einzelergebnisse der Gesteinskörnung 4 (Kies)

 Tabelle 4a:
 Ergebnisse der CT-Analyse der Einzelkörner

			Bezeichnung des CT-		mit CT ermittelte Oberflächenanteile [m ²]					
Art der Gesteins-	Gesteins- art	Masse des Einzelkorns		Voxel- größe	von außen nicht	Mantel-	von außen	Mantelfläche + von außen zugängliche Risse/Poren		
körnung		[g]	Datensatzes	[µm]	zugängliche Risse/Poren	fläche	Risse/Poren	absolut [m²]	relativ [m²/g]	
		0,84	6980		0	0,00056741	0	0,00056741	0,00067549	
		1,95	6981		0	0,000724256	0	0,000724256	0,00037141	
		1,35	6982		1,06227E-05	0,000694755	8,69495E-06	0,00070345	0,00052107	
		3,63	6983		5,03889E-06	0,001074273	2,26167E-07	0,001074499	0,00029601	
	Sandstein	3,35	6984	21.1	7,44249E-05	0,001282551	0,000533506	0,001816057	0,00054211	
		4,19	6985	21,1	7,09077E-05	0,001564984	0,000109369	0,001674353	0,00039961	
		4,78	6986		0,001005696	0,001423957	4,22611E-05	0,001466218	0,00030674	
		5,28	6987		0,000324734	0,001661378	2,00647E-05	0,001681442	0,00031846	
		6,26	6988		0,000179565	0,001905436	4,91236E-05	0,001954559	0,00031223	
GKA (Kies)		8,3	6989		0,000380141	0,002198532	1,58895E-05	0,002214422	0,0002668	
GR4 (Ries)		3,6	6960		0,000172415	0,001299755	2,56209E-05	0,001325376	0,00036816	
		1,59	6961		4,28292E-07	0,000713681	9,34051E-07	0,000714615	0,000449444	
		1,61	6962		5,36113E-05	0,000901112	0,000517066	0,001418178	0,000880856	
		3,27	6963		0	0,001145322	1,26262E-06	0,001146585	0,000350638	
	Tonstein	1,13	6964	21.1	0	0,001448493	0	0,001448493	0,001281853	
		2,78	6965	21,1	0,000703936	0,001023917	0,00046634	0,001490257	0,000536064	
		2,39	6966		4,35237E-06	0,000853631	0	0,000853631	0,000357168	
		2,63	6967		0,000216333	0,0011177	4,54978E-05	0,001163197	0,00044228	
		4,34	6968		0	0,001703565	8,01378E-07	0,001704366	0,000392711	
		2,51	6969		1,13048E-05	0,001060394	1,5618E-06	0,001061956	0,00042309	

Anlage A0

Seite 7 von 7 Seiten

Tabelle 4b: Ergebnisse der CT-Analyse der Einzelkörner

					mit CT ermittelte Oberflächenanteile [m ²]					
Art der Gesteins-	Gesteins- art	Masse des Einzelkorns	Bezeichnung des CT-	Voxel- größe	von außen nicht	Mantel-	von außen	Mantelfläche + von außen zugängliche Risse/Poren		
körnung		[g]	Datensatzes	[µm]	zugängliche Risse/Poren	fläche	Risse/Poren	absolut [m²]	relativ [m²/g]	
		8,19	6870		0,00056113	0,00233185	0,000124856	0,002456705	0,00029996	
		5,28	6871		6,1678E-05	0,0019863	3,93107E-05	0,002025608	0,00038364	
		8,67	6872		0,00055571	0,00270485	0,000303614	0,003008461	0,000347	
		5,99	6873		1,7065E-06	0,00313219	3,87826E-05	0,003170974	0,00052938	
	Grauwacke	4,89	6874	16.5	0,00167739	0,0016904	0,000491697	0,0021821	0,00044624	
		2,61	6875		3,2572E-06	0,00143111	4,01841E-06	0,001435132	0,00054986	
		6,3	6876		0,00070955	0,00216107	0,000111209	0,002272279	0,00036068	
		3,86	6877		8,4095E-05	0,00150686	7,54078E-06	0,001514397	0,00039233	
		3,09	6878		0,0004121	0,00230806	0,000289113	0,002597174	0,00084051	
GK4 (Kioc)		2,63	6879		9,8756E-06	0,00123752	2,8755E-06	0,001240392	0,00047163	
GR4 (Ries)		1,53	6950		2,1384E-05	0,00081515	6,23023E-05	0,000877456	0,0005735	
		0,72	6951		1,581E-06	0,0005084	1,40889E-05	0,000522492	0,00072568	
		1,09	6952		3,6295E-05	0,00068031	0,000184146	0,000864458	0,00079308	
		0,98	6953		1,1689E-05	0,00057561	5,52716E-05	0,000630882	0,00064376	
	Granit	1,92	6954	11.2	1,0118E-06	0,00087139	1,58932E-05	0,000887287	0,00046213	
		1,76	6955	11,2	7,229E-05	0,00093929	6,89579E-05	0,001008246	0,00057287	
		3,17	6956		0,00013616	0,00143475	0,000364872	0,001799623	0,0005677	
		2,77	6957		0,00013672	0,00128294	0,000525782	0,001808717	0,00065297	
		2,69	6958		4,9538E-05	0,00161573	5,91307E-05	0,001674864	0,00062263	
		6,15	6959		0,00010908	0,00187066	9,90976E-08	0,001870756	0,00030419	

Anlage A1

Seite 1 von 3 Seiten

Anlage A1

Ergebnisse der BET-Oberflächenanalyse an CT-Einzelkörnern und Korngemengen aller Gesteinskörnungen

Inhalt

1	Oberflächenanalyse an Einzelkörnern	2
2	Oberflächenanalyse an Korngemengen ausgewählter Kornfraktionen	3

1 Oberflächenanalyse an Einzelkörnern

		Mit BET be	stimmte spezifis	che Oberfläche	an CT-Einzelk	örnern der Frak	tion 8/16 [m²/g]	1)	
Probe		GK1		GK2	GK3		GK4		
	Quarz/Quarzit	Rhyolith	Plutonit	Grauwacke	Rhyolith	Sandstein	Tonstein	Grauwacke	Granit
0	0,043	0,511	0,732	5,521	0,548	8,689	1,624	0,467	0,503
1	0,197	2,58	0,537	0,153	0,609	1,188	0,543	0,62	0,202
2	0,109	1,769	0,804	5,172	0,544	2,193	1,063	1,496	0,425
3	0,046	Probe zerbrochen!	nicht messbar	0,518	0,803	2,978	0,043	0,476	0,355
4	0,242	1,977	3,33	0,501	0,451	2,055	0,11	3,025	0,569
5	0,144	0,482	1,953	0,149	1,534	nicht messbar	1,159	0,4	0,575
6	0,067	2,782	0,575	0,101	0,77	9,697	2,757	1,838	0,311
7	0,31	1,043	0,98	0,49	0,708	7,538	0,38	3,821	0,483
8	nicht messbar	0,838	0,215	0,059	0,252	nicht messbar	nicht messbar	0,971	0,399
9	nicht messbar	0,838	0,215	0,059	0,252	nicht messbar	nicht messbar	0,971	0,399
MW	0,14	1,41	1,11			4,91	0,858	1,46	0,421
MW, gewichtet	(0,68*0,14)+(0	,08*1,41)+(0,05*1.1	11) = 0,26	1,41	0,69	(0,48*4,91)+(0,22*0,858)+(0,16*1.46)+(0,06*0,421)= 2,83			
Legende:	1) Messung erfolgte m	nit Krypton							

2 Oberflächenanalyse an Korngemengen ausgewählter Kornfraktionen

Probe		Mit BE	ET bestimmte	spezifische	Oberfläche an	berfläche an Korngemengen der Fraktion 2/8 und 8/16 [m²/g] 1)						
	Messung	GK1			GK2	GK3		G	K4			
		Quarz/Quarzit	Rhyolith	Plutonit	Grauwacke	Rhyolith	Sandstein	Tonstein	Grauwacke	Granit		
	1		0,97		2,33; 2,98 ²⁾	0,89; 0,89 ²⁾	3,11					
KG 2/8	2		0,75		2,32; 2,85 ²⁾	0,90; 1,03 ²⁾	3,12					
	3		2,29		2,60; 3,70 ²⁾	0,76; 0,85 ²⁾	2,77					
	Mittelwert		1,34		2,42; 3,18 ²⁾	0,85; 0,92 ²⁾		3,	.00			
	1		2,85		0,96	0,69	1,31					
KC 9/16	2	2,55			0,90	0,37	0,66					
NG 0/10	3		0,42		1,21	0,9	0,7					
	Mittelwert		1,94		1,03	0,65	0,89					
Legende:		1) Messung erf	folgte mit Sticł	stoff, 3 x 20 g	g Einwaage							
		2) Korngruppe	n 2/5; 5/8									

Anlage A2

Ergebnisse der Quecksilber-Druckporosimetrie an ausgewählten Einzelkörnern aller Gesteinskörnungen

Inhalt

1	GK1 (Kies)	2
2	GK2 (Festgestein: Grauwacke)	4
3	GK3 (Festgestein: Rhyolith)	5
4	GK4 (Kies)	6

1 GK1 (Kies)

1.1 Quarz

Abbildung 1: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK1 (Quarz) in Abhängigkeit vom Porendurchmesser

1.2 Rhyolith

Abbildung 2: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK1 (Rhyolith) in Abhängigkeit vom Porendurchmesser

1.3 Plutonit

Abbildung 3: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK1 (Plutonit) in Abhängigkeit vom Porendurchmesser

GK1	Ausgangs- masse	mittlerer Porendurchmesser	Porosität	spez. Oberfläche
	[g]	[nm]	[Vol%]	[m²/g]
Quarzkorn 1	6,0988	19,62	1,8289	1,434
Quarzkorn 2	5,95	14,47	1,2701	1,332
Rhyolithkorn 1	1,7656	38,5	2,4674	1,001
Rhyolithkorn 2	2,196	23,19	6,7318	4,836
Plutonitkorn 1	4,1271	33,91	8,8145	4,288
Plutonitkorn 2	4,3985	32,38	6,4441	3,028

Tabelle 1: Ausgewählte Parameter der Einzelkörner

2 GK2 (Festgestein: Grauwacke)

Abbildung 4: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK2 in Abhängigkeit vom Porendurchmesser

er
1

GK2	Ausgangs- masse	mittlerer Porendurchmesser	Porosität	spez. Oberfläche
	[g]	[nm]	[Vol%]	[m²/g]
Grauwackekorn 1	4,2091	2,6616	15,71	2,536
Grauwackekorn 2	5,6232	1,4793	20,15	1,085

3 GK3 (Festgestein: Rhyolith)

GK3	Ausgangs- masse	mittlerer Porendurchmesser	Porosität	spez. Oberfläche
	[g]	[nm]	[Vol%]	[m²/g]
Grauwackekorn 1	5,5320	2,4525	20,14	1,87
Grauwackekorn 2	4,9045	3,2540	24,18	2,12

Tabelle 3: Ausgewählte Parameter der Einzelkörner

4 GK4 (Kies)

4.1 Sandstein

Abbildung 6: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK4 (Sandstein) in Abhängigkeit vom Porendurchmesser

4.2 Tonstein

Abbildung 7: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK4 (Tonstein) in Abhängigkeit vom Porendurchmesser

4.3 Grauwacke

Abbildung 8: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK4 (Grauwacke) in Abhängigkeit vom Porendurchmesser

4.4 Granit

Abbildung 9: Differentieller und kumulativer Quecksilbereintrag in zwei Einzelkornproben der GK4 (Granit) in Abhängigkeit vom Porendurchmesser

GK4	Ausgangs- masse	mittlerer Porendurchmesser	Porosität	spez. Oberfläche
	[g]	[nm]	[Vol%]	[m²/g]
Sandstein 1	3,9330	10,5686	29,03	5,858
Sandstein 2	8,8016	7,9141	76,00	1,687
Tonstein 1	6,3138	1,9308	15,84	1,870
Tonstein 2	7,0203	1,5593	19,92	1,192
Grauwacke 1	5,8992	1,5419	15,40	1,501
Grauwacke 2	4,9061	1,7343	14,60	1,745
Granit 1	6,3360	2,6196	32,00	1,262
Granit 2	8,6978	1,7468	39,38	0,688

Tabelle 4: Ausgewählte Parameter der Einzelkörner

Anlage A3

Ergebnisse der AKR-Schnellprüfverfahren nach Alkali-Richtlinie (2013) für die einzelnen Gesteinskörnungen

Inhalt

1	GK1 (Kies) mit Prüfung der Fraktionen 2/8 mm, 8/16 mm und 16/22 mm im Volumenverhältnis 28:29:43	2
2	GK2 (Grauwacke) mit Prüfung der Fraktionen 8/16 mm	3
3	GK3 (Rhyolith) mit Prüfung der Fraktionen 8/16 mm	4
4	GK4 (Kies) mit Prüfung der Fraktionen 2/8 mm, 8/16 mm und 16/22 mm im Volumenverhältnis 28:29:43	5

1 **GK1 (Kies)** mit Prüfung der Fraktionen 2/8 mm, 8/16 mm und 16/22 mm im Volumenverhältnis 28:29:43

Abbildung 1: Zeitlicher Verlauf der Dehnung der Mörtelprismen

GK1-1	Einwirkung NaOH-Lösung (1mol)				
Dauer	Probekörper 1	Probekörper 2	Probekörper 3		
[d]		[mm/m]			
1	0,06	0,05	0,01		
4	0,48	0,43	0,48		
5	0,64	0,61	0,63		
6	0,77	0,72	0,73		
7	0,93	0,84	0,84		
8	1,01	0,92	0,97		
11	1,35	1,19	1,24		
12	1,42	1,26	1,33		
13	1,47	1,31	1,40		

 Tabelle 1a Einzelwerte der Dehnungsmessungen (Serie 1)

Taballa 1h	Einzolworto	dor	Deboundamagaungan	(Soria 2)
	EINZeiweite	uer	Dennungsmessungen	(Selle Z)

GK1-2	Einwirkung NaOH-Lösung (1mol)				
Dauer	Probekörper 1	Probekörper 2	Probekörper 3		
[d]		[mm/m]			
1	0,10	0,09	0,08		
4	0,51	0,52	0,48		
5	0,61	0,63	0,57		
6	0,78	0,82	0,72		
7	0,92	0,96	0,83		
8	1,05	1,10	0,94		
11	1,41	1,46	1,28		
12	1,50	1,58	1,42		
13	1,61	1,69	1,52		

2 GK2 (Grauwacke) mit Prüfung der Fraktionen 8/16 mm

Abbildung 2: Zeitlicher Verlauf der Dehnung der Mörtelprismen

Tabelle 2-1: Einzelw	erte der Dehnungsmessungen (Serie	1)	

GK2a	Einwirkung NaOH-Lösung (1mol)				
Dauer	Probekörper 1	Probekörper 2	Probekörper 3		
[d]		[mm/m]			
1	0,04	0,06	0,04		
4	0,30	0,30	0,25		
5	0,39	0,39	0,35		
6	0,51	0,46	0,43		
7	0,59	0,62	0,49		
8	0,68	0,69	0,57		
11	0,89	0,92	0,78		
12	1,01	1,05	0,92		
13	1,09	1,12	0,99		

Tabelle 2-2: Einzelwerte der Dehnungsmessungen (Serie 2)

GK2b	Einwirkung NaOH-Lösung (1mol)				
Dauer	Probekörper 1	Probekörper 1 Probekörper 2 Probekö			
[d]		[mm/m]			
1	0,09	0,12	0,03		
4	0,37	0,43	0,33		
5	0,52	0,56	0,44		
6	0,67	0,72	0,54		
7	0,82	0,88	0,66		
8	0,93	1,01	0,76		
11	1,31	1,40	1,10		
12	1,42	1,52	1,22		
13	1,53	1,63	1,31		

3 GK3 (Rhyolith) mit Prüfung der Fraktionen 8/16 mm

Abbildung 3: Zeitliche	r Verlauf	der Dehnung	der Mörtelprismen
------------------------	-----------	-------------	-------------------

GK3a	Einwirkung NaOH-Lösung (1mol)						
Dauer	Probekörper 1	Probekörper 2	Probekörper 3				
[d]		[mm/m]					
1	0,01	0,03	0,01				
4	0,21	0,25	0,22				
5	0,33	0,38	0,36				
6	0,47	0,51	0,51				
7	0,62	0,67	0,67				
8	0,74	0,79	0,79				
11	1,21	1,28	1,32				
12	1,38	1,44	1,49				
13	1,53	1,58	1,65				

Taballa 3a: Einzolworte der Debnungsmessungen	(Sorio 1	1
Tabelle Sa. Ellizeiwerte der Dennungsmessungen	(Selle I)

Tabelle 3b. Finzelwerte der Dehnungsmessungen	(Serie 2)	
Tabelle 3D. Ellizeiwerte der Dennungsmessungen		

GK3b	Einwirkung NaOH-Lösung (1mol)							
Dauer	Probekörper 1 Probekörper 2 Probekörper 3							
[d]		[mm/m]						
1	0,10	0,06	0,09					
4	0,31	0,28	0,33					
5	0,43	0,43	0,48					
6	0,59	0,59	0,63					
7	0,75	0,76	0,80					
8	0,91	0,93	0,96					
11	1,45	1,50	1,52					
12	1,62	1,66	1,67					
13	1,78	1,84	1,84					

4 GK4 (Kies) mit Prüfung der Fraktionen 2/8 mm, 8/16 mm und 16/22 mm im Volumenverhältnis 28:29:43

Abbildung 4: Zeitlicher Verlauf der Dehnung der Mörtelprismen

GK4-1	Einwirkung NaOH-Lösung (1mol)					
Dauer	Probekörper 1	Probekörper 2	Probekörper 3			
[d]		[mm/m]				
1	0,04	0,07	0,07			
4	0,27	0,30	0,31			
5	0,35	0,41	0,41			
6	0,45	0,52	0,53			
7	0,60	0,66	0,65			
8	0,71	0,80	0,78			
11	1,01	1,16	1,10			
12	1,12	1,31	1,23			
13	1,24	1,44	1,36			

Tabelle 4a: Einzelwerte der Dehnungsmessungen (Serie 1)

Taballa 1	h. Einzolworte	v dar 2	Dohnungomoog	inaon (Corio 2)
i abelle 4	D. EINZEIWEILE	tuerz.	Dennunusmessu		Selle ZI

GK4-2	Einwirkung NaOH-Lösung (1mol)					
Dauer	Probekörper 1	Probekörper 2	Probekörper 3			
[d]		[mm/m]				
1	0,08	0,08	0,06			
4	0,30	0,28	0,25			
5	0,38	0,38	0,36			
6	0,49	0,46	0,46			
7	0,59	0,53	0,58			
8	0,69	0,64	0,70			
11	1,01	0,97	1,05			
12	1,16	1,13	1,23			
13	1,29	1,26	1,37			

Anlage A4

Ergebnisse der verschiedenartigen AKR-provozierenden Lagerungen der einzelnen Betonarten

Inhalt

1	Betonversuche mit der Gesteinskörnung GK1 (Kies)	. 2
2	Betonversuche mit der Gesteinskörnung GK2 (Festgestein)	. 8
3	Betonversuche mit der Gesteinskörnung GK3 (Festgestein)	14
4	Betonversuche mit der Gesteinskörnung GK4 (Kies)	20

1 Betonversuche mit der Gesteinskörnung GK1 (Kies)

1.1 Oberbeton 0/8 (Waschbeton) nach ARS 04/2013

1.1.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 1.1.1 Diagramm mit Dehnungsverläufen

Fabelle 1.1.1a Einzelwerte de	er Dehnungsmessungen
-------------------------------	----------------------

OB 0/8	Einwirkung NaCl-Lösung (3%)			Einwirkung NaCl-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[mi	m/m]		
14	0,06	0,07	0,06	0,10	0,10	0,10
28	0,10	0,10	0,10	0,17	0,17	0,17
42	0,12	0,14	0,14	0,27	0,26	0,26
56	0,14	0,16	0,15	0,39	0,35	0,35
70	0,16	0,16	0,18	0,47	0,45	0,45
84	0,18	0,20	0,19	0,57	0,56	0,56
98	0,21	0,24	0,22	0,71	0,68	0,66
112	0,24	0,26	0,25	0,79	0,80	0,74
126	0,26	0,30	0,27	0,95	0,90	0,87
140	0,28	0,30	0,28	1,02	0,98	0,95
154	0,28	0,32	0,30	1,21	1,07	1,04
168	0,26	0,32	0,29	1,16	1,16	1,13

Tabelle 1.1.1b Einzelwerte der Massebestimmungen

OB 0/8	Einwirkung NaCl-Lösung (3%)			Einwirk	ung NaCl-Lösu	ng (10 %)
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[M	l%]		
14	0,53	0,65	0,50	0,74	0,79	0,79
28	0,78	0,85	0,86	1,02	1,07	1,10
42	0,87	0,99	0,89	1,19	1,27	1,32
56	1,01	1,10	1,00	1,47	1,47	1,44
70	1,07	1,18	1,14	1,47	1,53	1,55
84	1,21	1,27	1,17	1,56	1,70	1,75
98	1,26	1,33	1,25	1,67	1,78	1,75
112	1,32	1,41	1,31	1,75	1,89	1,80
126	1,40	1,47	1,39	1,84	1,95	1,91
140	1,49	1,50	1,37	1,87	1,95	1,91
154	1,43	1,61	1,45	1,95	2,09	2,03
168	1,51	1,61	1,45	1,95	2,06	2,03

1.1.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

 Tabelle 1.1.2a Einzelwerte der Dehnungsmessungen

OB 0/8	Einwirkung Wasser			Einwirku	ng NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	n/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,21	0,20	0,20	0,21	0,21	0,24
42	0,21	0,21	0,21	0,26	0,24	0,26
63	0,26	0,25	0,23	0,32	0,29	0,32
84	0,29	0,28	0,26	0,43	0,36	0,39
105	0,32	0,34	0,33	0,56	0,44	0,54
126	0,36	0,37	0,37	0,73	0,57	0,71
147	0,36	0,39	0,39	0,92	0,70	0,92
168	0,40	0,45	0,44	1,15	0,90	1,20
189	0,41	0,46	0,46	1,39	1,13	1,53
210	0,39	0,39	0,39	1,61	1,34	1,74
231	0,44	0,46	0,46	1,83	1,58	2,01
252	0,41	0,47	0,47	2,07	1,83	2,26

Tabelle 1.1.2b Einzelwerte der Massebestimmung

OB 0/8	Ei	nwirkung Wass	ser	Einwirku	ng NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	3,10	3,24	3,38	3,11	2,93	3,11
42	3,34	3,59	3,47	3,40	3,25	3,23
63	3,45	3,98	3,51	3,91	3,50	3,67
84	3,50	3,89	4,25	4,29	3,67	4,28
105	3,54	3,98	4,26	4,66	3,93	4,54
126	3,56	3,99	4,27	4,71	4,26	4,85
147	3,61	4,10	4,19	5,05	4,64	5,34
168	3,72	4,19	4,26	5,21	5,07	5,71
189	3,76	4,15	4,25	5,35	5,47	5,75
210	3,77	4,23	4,36	5,49	5,62	5,76
231	3,62	4,28	4,29	5,63	5,56	5,85
252	3,64	4,26	4,37	5,79	5,64	5,93

1.2 Oberbeton D>8/Unterbeton nach ARS 04/2013

1.2.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 2.2.1 Diagramm mit Dehnungsverläufen

Tabelle 2.2.1a Einzelwerte der Dehnungsmessungen

OB/UB	Einwirkung NaCl-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[m	nm/m]		
14	0,04	0,07	0,06	0,07	0,08	0,08
28	0,08	0,10	0,09	0,11	0,13	0,12
42	0,07	0,10	0,09	0,13	0,14	0,14
56	0,10	0,14	0,10	0,17	0,19	0,18
70	0,12	0,16	0,11	0,22	0,23	0,23
84	0,15	0,19	0,14	0,26	0,27	0,27
98	0,16	0,20	0,16	0,34	0,33	0,35
112	0,16	0,21	0,16	0,37	0,37	0,40
126	0,17	0,21	0,17	0,47	0,43	0,47
140	0,19	0,23	0,20	0,56	0,53	0,54
154	0,19	0,24	0,21	0,62	0,64	0,60
168	0,22	0,21	0,20	0,97	0,97	0,93

Tabelle 1.2.1b Einzelwerte der Massebestimmung

OB/UB	Einwirk	Einwirkung NaCl-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9	
[d]			[N	1%]			
14	0,05	0,25	0,29	0,44	0,43	0,46	
28	0,16	0,33	0,32	0,52	0,54	0,57	
42	0,16	0,38	0,40	0,63	0,68	0,60	
56	0,24	0,49	0,48	0,74	0,76	0,65	
70	0,38	0,60	0,56	0,93	0,92	0,82	
84	0,49	0,71	0,77	0,93	1,01	0,84	
98	0,54	0,90	0,72	0,98	1,03	0,93	
112	0,62	0,87	0,80	1,07	1,11	1,01	
126	0,68	0,90	0,85	1,18	1,20	1,12	
140	0,70	0,98	0,91	1,18	1,22	1,14	
154	0,76	1,01	0,91	1,20	1,25	1,17	
168	0,76	1,03	0,96	1,18	1,25	1,14	

GK1

$1.2.2 \quad \mbox{Klimawechsellagerung mit H_2O - und $NaCl-Beaufschlagung$}$

Abbildung 1.2.2: Diagramm mit Dehnungsverläufen

Tabelle 1.2.2a: Einzelwerte der Dehnungsmessungen

OB/UB	Ei	nwirkung Wass	er	Einwirku	ing NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	n/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,18	0,19	0,19	0,19	0,20	0,20
42	0,20	0,21	0,21	0,26	0,25	0,25
63	0,21	0,24	0,22	0,33	0,31	0,31
84	0,23	0,25	0,24	0,40	0,41	0,41
105	0,29	0,29	0,30	0,54	0,55	0,54
126	0,29	0,29	0,31	0,65	0,70	0,66
147	0,29	0,30	0,31	0,76	0,85	0,79
168	0,31	0,32	0,31	0,86	1,04	0,91
189	0,33	0,35	0,33	0,97	1,24	0,99
210	0,34	0,37	0,35	1,02	1,35	1,08
231	0,37	0,39	0,37	1,14	1,35	1,22
252	0,34	0,33	0,33	1,20	1,63	1,30

Tabelle 1.2.2b: Einzelwerte der Massebestimmungen

OB/UB	Ei	nwirkung Wass	er	Einwirku	ing NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	2,75	2,74	2,63	2,66	2,70	2,64
42	2,91	2,87	2,83	3,06	3,11	2,92
63	2,92	2,90	2,98	3,30	3,47	3,35
84	2,97	2,93	2,92	3,52	3,55	3,54
105	2,97	3,01	2,94	3,57	3,80	3,77
126	3,06	3,05	3,06	3,59	4,11	4,14
147	3,16	3,08	3,03	3,74	4,20	4,06
168	3,10	2,96	2,89	3,81	4,39	3,93
189	3,06	2,93	2,87	3,96	4,21	3,74
210	2,98	2,99	2,81	3,54	4,10	3,83
231	2,85	2,71	2,80	3,83	4,16	3,98
252	3,04	2,98	2,91	4,03	4,34	4,16

1.3 Betonzusammensetzung nach Alkali-Richtlinie

1.3.1 60°C-Betonversuch

Abbildung 1.3.1: Diagramm mit Dehnungsverlauf

Tabelle 1.3.1: E	inzelwerte der Dehnungsmessungen und Massebestimmungen

Beton nach Alkali-RL.	60°C-Betonversuch							
Daviar	Pro	bekörper 16	Pro	bekörper 17	Pro	bekörper 18		
Dauer	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung		
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]		
28	0,49	0,64	0,44	0,61	0,50	0,67		
56	0,76	0,75	0,67	0,74	0,71	0,71		
84	0,96	0,80	0,82	0,74	0,81	0,75		
112	1,08	0,85	0,94	0,82	0,87	0,81		
140	1,19	1,05	1,01	0,86	0,87	0,84		
168	1,20	0,88	1,04	0,85	0,90	0,83		
196	1,21	0,91	1,06	0,89	0,89	0,87		

1.3.2 40°C-Betonversuch (Nebelkammerlagerung)

Abbildung 1.3.3: Rissweite der Würfel

Tabelle 1.3.2a: Einzelwerte der Dehnungsmessungen, Massebestimmungen und Rissweiten

Beton nach Alkali-RL.			40°C-	Betonversuch		
Douor	Probekörper 19		Pro	bekörper 20	Probekörper 21	
Dauei	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]
6	0,26	0,45	0,38	0,44	0,47	0,36
28	0,40	0,88	0,43	0,82	0,41	0,79
56	0,48	0,95	0,49	0,87	0,46	0,84
84	0,51	1,05	0,51	0,96	0,50	0,93
112	0,68	1,15	0,55	1,08	0,48	1,04
140	0,72	1,19	0,75	1,14	0,66	1,10
168	0,78	1,23	0,78	1,18	0,78	1,17
196	0,80	1,25	0,85	1,20	0,81	1,19
224	0,80	1,17	0,85	1,15	0,82	1,19
252	0,82	1,22	0,90	1,16	0,85	1,17
280	0,83	1,26	0,90	1,20	0,86	1,20
308	0,84	1,26	0,90	1,22	0,86	1,22
Dauer			Rissw	eite der Würfel		
[d]				[mm]		
6				0		
28				0		
56				0		
84				0		
112				0		
140				0,1		
168				0,1		
190				0,1		
224				0,2		
252				0,2		
280				0,2		
308				0,2		

2 Betonversuche mit der Gesteinskörnung GK2 (Festgestein)

2.1 Oberbeton 0/8 (Waschbeton) nach ARS 04/2013

2.1.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 2.1.1 Diagramm mit Dehnungsverläufen

smessungen

OB 0/8	Einwirk	Einwirkung NaCl-Lösung (3%)			ung NaCl-Lösur	ng (10 %)
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[mi	m/m]		
14	0,06	0,07	0,06	0,10	0,10	0,10
28	0,10	0,10	0,10	0,17	0,17	0,17
42	0,12	0,14	0,14	0,27	0,26	0,26
56	0,14	0,16	0,15	0,39	0,35	0,35
70	0,16	0,16	0,18	0,47	0,45	0,45
84	0,18	0,20	0,19	0,57	0,56	0,56
98	0,21	0,24	0,22	0,71	0,68	0,66
112	0,24	0,26	0,25	0,79	0,80	0,74
126	0,26	0,30	0,27	0,95	0,90	0,87
140	0,28	0,30	0,28	1,02	0,98	0,95
154	0,28	0,32	0,30	1,21	1,07	1,04
168	0,26	0,32	0,29	1,16	1,16	1,13

Tabelle 2.1.1b Einzelwerte der Massebestimmungen

OB 0/8	Einwirk	ung NaCl-Lösu	ng (3%)	Einwirk	ung NaCl-Lösu	ng (10 %)
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[M	I%]		
14	0,53	0,65	0,50	0,74	0,79	0,79
28	0,78	0,85	0,86	1,02	1,07	1,10
42	0,87	0,99	0,89	1,19	1,27	1,32
56	1,01	1,10	1,00	1,47	1,47	1,44
70	1,07	1,18	1,14	1,47	1,53	1,55
84	1,21	1,27	1,17	1,56	1,70	1,75
98	1,26	1,33	1,25	1,67	1,78	1,75
112	1,32	1,41	1,31	1,75	1,89	1,80
126	1,40	1,47	1,39	1,84	1,95	1,91
140	1,49	1,50	1,37	1,87	1,95	1,91
154	1,43	1,61	1,45	1,95	2,09	2,03
168	1,51	1,61	1,45	1,95	2,06	2,03

GK2

2.1.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

 Tabelle 2.1.2a Einzelwerte der Dehnungsmessungen

OB 0/8	Ei	nwirkung Wass	ser	Einwirku	ing NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	ח/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,26	0,28	0,28	0,30	0,30	0,28
42	0,28	0,28	0,29	0,31	0,30	0,30
63	0,30	0,29	0,32	0,34	0,35	0,32
84	0,30	0,30	0,33	0,35	0,40	0,35
105	0,33	0,31	0,35	0,43	0,53	0,49
126	0,36	0,34	0,35	0,51	0,72	0,65
147	0,36	0,34	0,35	0,60	1,00	0,86
168	0,38	0,38	0,39	0,73	1,35	1,21
189	0,38	0,37	0,38	0,85	1,67	1,61
210	0,32	0,32	0,34	0,95	1,92	1,90
231	0,38	0,35	0,37	1,13	2,30	2,37
252	0,36	0,33	0,35	1,28	2,59	2,69

Tabelle 2.1.2b Einzelwerte der Massebestimmung

OB 0/8	Einwirkung Wasser			Einwirkung NaCI-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	3,33	3,12	3,30	3,20	3,13	3,03
42	3,83	3,22	3,24	3,45	3,43	3,25
63	3,92	3,41	3,59	3,61	3,86	3,69
84	3,84	3,44	3,64	3,54	4,37	3,86
105	3,95	3,46	3,69	3,74	4,64	4,07
126	3,83	3,35	3,78	3,77	5,15	4,51
147	3,79	3,52	3,78	4,13	5,60	4,93
168	3,78	3,55	3,78	4,34	5,48	5,24
189	3,89	3,73	3,95	4,93	5,69	5,78
210	4,09	3,62	3,81	5,04	5,83	5,63
231	3,71	3,50	3,73	5,05	5,91	5,64
252	3,71	3,54	3,72	5,29	5,95	5,73

2.2 Oberbeton D>8/Unterbeton nach ARS 04/2013

2.2.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 4.2.1 Diagramm mit Dehnungsverläufen

Tabelle 3.2.1a Einzelwerte der Dehnungsmessungen

OB/UB	Einwirkung NaCI-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)					
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9			
[d]		[mm/m]							
14	0,02	0,20	0,05	0,02	0,04	0,04			
28	0,07	0,21	0,06	0,06	0,07	0,06			
42	0,06	0,21	0,06	0,06	0,07	0,06			
56	0,09	0,24	0,06	0,10	0,12	0,10			
70	0,11	0,27	0,06	0,13	0,15	0,12			
84	0,15	0,34	0,10	0,19	0,21	0,17			
98	0,17	0,34	0,12	0,26	0,28	0,22			
112	0,19	0,34	0,14	0,36	0,37	0,29			
126	0,19	0,36	0,15	0,48	0,47	0,37			
140	0,20	0,38	0,17	0,64	0,63	0,49			
154	0,22	0,43	0,21	0,78	0,77	0,61			
168	0,20	0,38	0,16	0,65	1,48	0,74			

Tabelle 2.2.1b Einzelwerte der Massebestimmung

OB/UB	Einwirkung NaCl-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)			
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9	
[d]			[N	1%]			
14	0,24	0,32	0,46	0,40	0,43	0,43	
28	0,51	0,41	0,40	0,61	0,59	0,58	
42	0,51	0,49	0,57	0,66	0,69	0,61	
56	0,51	0,65	0,57	0,74	0,77	0,74	
70	0,61	0,70	0,70	0,82	0,88	0,82	
84	0,64	0,79	0,78	0,90	0,99	0,90	
98	0,72	0,95	0,86	0,92	1,02	0,90	
112	0,80	0,97	1,00	1,03	1,12	1,06	
126	0,85	1,06	1,02	1,11	1,15	1,09	
140	0,93	1,14	1,08	1,19	1,18	1,09	
154	0,93	1,11	1,10	1,21	1,23	1,12	
168	0,98	-99,90	1,16	1,16	1,26	1,12	

2,5 210 d q ים NaCl-Beaufschlagung 89 252 ➡ H2O-Beaufschlagung 2,0 Dehnung [mm/m] - • Grenzwert (NaCl-L.) - • Grenzwert (H2O) 1,5 126 d 1,0 0,5 0,0 63 84 189 21 42 105 126 147 168 210 231 252 0 Lagerungsdauer [d]

2.2.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

Abbildung 2.2.2: Diagramm mit Dehnungsverläufen

Tabelle 2.2.2a: Einzelwerte der Dehnungsmessungen

OB/UB	Einwirkung Wasser			Einwirkung NaCI-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	n/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,25	0,23	0,23	0,25	0,25	0,24
42	0,26	0,23	0,24	0,27	0,27	0,26
63	0,26	0,24	0,26	0,32	0,31	0,31
84	0,26	0,25	0,26	0,38	0,34	0,35
105	0,29	0,27	0,29	0,49	0,43	0,45
126	0,29	0,29	0,30	0,62	0,53	0,55
147	0,29	0,29	0,30	0,76	0,63	0,67
168	0,27	0,25	0,26	0,96	0,83	0,88
189	0,26	0,28	0,27	1,17	1,03	1,08
210	0,30	0,27	0,26	1,37	1,19	1,24
231	0,31	0,30	0,30	1,58	1,40	1,45
252	0,29	0,31	0,25	1,74	1,55	1,61

Tabelle 2.2.2b: Einzelwerte der Massebestimmungen

OB/UB	Einwirkung Wasser			Einwirkung NaCI-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	2,89	2,93	2,85	2,77	2,42	2,79
42	2,99	3,03	2,97	3,24	2,95	3,28
63	3,06	3,06	2,97	3,58	3,08	3,61
84	3,07	3,14	3,13	3,82	3,33	3,91
105	3,10	3,08	3,05	4,07	3,58	4,13
126	3,00	3,01	3,14	4,44	3,91	4,25
147	3,12	3,27	3,25	4,55	4,13	4,55
168	3,13	3,11	3,11	4,70	4,31	4,73
189	3,10	3,04	3,14	4,80	4,40	4,87
210	2,95	2,89	2,83	4,85	4,47	4,81
231	2,83	2,74	2,74	4,52	4,47	4,61
252	3,12	2,88	3,07	4,85	4,71	4,88

2.3 Betonzusammensetzung nach Alkali-Richtlinie

2.3.1 60°C-Betonversuch

Abbildung 2.5.1: Diagramm mit Dehnungsverlauf

Tabelle 2.3.1: Einzelwerte der Dehnungsmessungen und Massebestimmungen

Beton nach Alkali-RL.	60°C-Betonversuch						
Douor	Probekörper 16		Probekörper 17		Probekörper 18		
Dauer	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung	
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]	
28	0,14	0,47	0,22	0,32	0,15	0,39	
56	0,14	0,52	0,17	0,37	0,19	0,47	
84	0,14	0,49	0,17	0,37	0,20	0,44	
112	0,15	0,57	0,21	0,42	0,21	0,50	
140	0,21	0,61	0,19	0,47	0,27	0,53	
168	0,20	0,59	0,22	0,47	0,27	0,68	
196	0,20	0,58	0,23	0,47	0,27	0,52	

2.3.2 40°C-Betonversuch (Nebelkammerlagerung)

Abbildung 2.3.3 Rissweite der Würfel

 Tabelle 2.3.2a:
 Einzelwerte der Dehnungsmessungen, Massebestimmungen und Rissweite

Beton nach Alkali-RL.	40°C Betonversuch								
Douor	Pro	bekörper 19	Pro	bekörper 20	Pro	bekörper 21			
Dauei	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung			
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]			
6	0,32	0,16	0,33	0,52	0,32	0,51			
28	0,36	0,82	0,33	0,79	0,33	0,83			
56	0,36	0,87	0,43	0,84	0,38	0,88			
84	0,37	0,91	0,39	0,89	0,37	0,91			
112	0,41	0,92	0,45	0,98	0,40	0,93			
140	0,41	0,97	0,41	0,97	0,41	1,00			
168	0,44	0,99	0,45	0,98	0,41	0,98			
196	0,44	1,02	0,45	1,02	0,42	1,03			
224	0,40	1,04	0,42	1,02	0,38	1,04			
252	0,45	1,00	0,45	1,03	0,41	1,01			
280	0,44	1,04	0,46	1,05	0,41	1,03			
308	0,43	1,06	0,45	1,07	0,42	1,06			
Dauer [d]			Rissw	eite der Würfel [mm]					
6				0					
28				0					
56				0					
84				0					
112				0,1					
140				0,1					
108		0,3							
224				0,6					
252				0,6					
280				0,6					
308				0,6					

3 Betonversuche mit der Gesteinskörnung GK3 (Festgestein)

3.1 Oberbeton 0/8 (Waschbeton) nach ARS 04/2013

3.1.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 3.1.1 Diagramm mit Dehnungsverläufen

Tabelle 3.1.1a Einzelwe	rte der Dehnungsmessunge	en
-------------------------	--------------------------	----

OB 0/8	Einwirkung NaCl-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[mi	m/m]		
14	0,06	0,07	0,06	0,10	0,10	0,10
28	0,10	0,10	0,10	0,17	0,17	0,17
42	0,12	0,14	0,14	0,27	0,26	0,26
56	0,14	0,16	0,15	0,39	0,35	0,35
70	0,16	0,16	0,18	0,47	0,45	0,45
84	0,18	0,20	0,19	0,57	0,56	0,56
98	0,21	0,24	0,22	0,71	0,68	0,66
112	0,24	0,26	0,25	0,79	0,80	0,74
126	0,26	0,30	0,27	0,95	0,90	0,87
140	0,28	0,30	0,28	1,02	0,98	0,95
154	0,28	0,32	0,30	1,21	1,07	1,04
168	0,26	0,32	0,29	1,16	1,16	1,13

Tabelle 3.1.1b Einzelwerte der Massebestimmungen

OB 0/8	Einwirk	ung NaCl-Lösu	ng (3%)	Einwirk	ung NaCl-Lösu	ng (10 %)
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[M	l%]		
14	0,53	0,65	0,50	0,74	0,79	0,79
28	0,78	0,85	0,86	1,02	1,07	1,10
42	0,87	0,99	0,89	1,19	1,27	1,32
56	1,01	1,10	1,00	1,47	1,47	1,44
70	1,07	1,18	1,14	1,47	1,53	1,55
84	1,21	1,27	1,17	1,56	1,70	1,75
98	1,26	1,33	1,25	1,67	1,78	1,75
112	1,32	1,41	1,31	1,75	1,89	1,80
126	1,40	1,47	1,39	1,84	1,95	1,91
140	1,49	1,50	1,37	1,87	1,95	1,91
154	1,43	1,61	1,45	1,95	2,09	2,03
168	1,51	1,61	1,45	1,95	2,06	2,03

3.1.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

 Tabelle 3.1.2a Einzelwerte der Dehnungsmessungen

OB 0/8	Ei	nwirkung Wass	er	Einwirku	ng NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	n/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,20	0,27	0,24	0,26	0,30	0,24
42	0,26	0,27	0,24	0,31	0,29	0,21
63	0,27	0,30	0,25	0,31	0,32	0,24
84	0,29	0,33	0,25	0,36	0,34	0,29
105	0,31	0,36	0,28	0,43	0,44	0,38
126	0,33	0,37	0,30	0,52	0,52	0,47
147	0,37	0,40	0,33	0,67	0,66	0,61
168	0,37	0,43	0,35	0,85	0,85	0,75
189	0,33	0,38	0,31	0,96	0,97	0,88
210	0,36	0,42	0,35	1,21	1,19	1,10
231	0,36	0,42	0,36	1,41	1,41	1,31
252	0,40	0,47	0,40	1,73	1,69	1,58

Tabelle 3.1.2b Einzelwerte der Massebestimmung

OB 0/8	Ei	nwirkung Wass	ser	Einwirku	ng NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	3,45	3,46	3,28	2,83	3,09	2,68
42	3,40	3,49	3,64	3,29	3,25	3,08
63	3,65	3,81	3,91	3,44	3,56	3,64
84	3,67	3,86	4,05	3,55	3,72	4,03
105	3,67	3,74	3,78	3,61	3,76	4,13
126	3,92	3,99	4,15	3,89	4,05	4,38
147	3,90	4,11	4,27	4,16	4,35	4,61
168	4,02	4,10	4,15	4,77	4,95	5,07
189	3,83	4,08	4,33	5,03	5,25	5,39
210	3,69	4,04	4,27	5,12	5,22	5,38
231	3,91	4,07	4,07	5,26	5,49	5,64
252	3,67	4,26	4,29	5,61	5,81	5,88

3.2 Oberbeton D>8/Unterbeton nach ARS 04/2013

3.2.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 3.2.1 Diagramm mit Dehnungsverläufen

Tabelle 3.2.1a Einzelwerte der Dehnungsmessungen

OB/UB	Einwirkung NaCl-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[m	m/m]		
14	0,06	0,05	0,05	0,08	0,08	0,07
28	0,09	0,07	0,07	0,11	0,12	0,11
42	0,10	0,09	0,09	0,14	0,15	0,14
56	0,13	0,11	0,12	0,16	0,17	0,14
70	0,16	0,13	0,15	0,21	0,24	0,20
84	0,19	0,16	0,19	0,29	0,32	0,27
98	0,20	0,16	0,18	0,37	0,40	0,32
112	0,25	0,20	0,22	0,50	0,55	0,43
126	0,24	0,21	0,23	0,56	0,56	0,45
140	0,25	0,21	0,22	0,66	0,59	0,43
154	0,25	0,22	0,24	0,70	0,79	0,55
168	0,26	0,22	0,26	0,86	0,95	0,70

Tabelle 3.2.1b Einzelwerte der Massebestimmung

OB/UB	Einwirk	ung NaCl-Lösu	ng (3%)	Einwirkung NaCl-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[N	1%]		
14	0,39	0,24	0,32	0,52	0,66	0,50
28	0,58	0,39	0,53	0,71	0,86	0,69
42	0,81	0,64	0,77	0,89	0,92	0,82
56	0,78	0,65	0,80	1,02	0,99	0,91
70	0,93	0,76	0,86	1,04	1,18	0,98
84	1,04	0,87	1,11	1,18	1,19	1,17
98	1,12	0,92	1,11	1,27	1,26	1,16
112	1,23	1,03	1,15	1,34	1,34	1,22
126	1,27	1,04	1,18	1,39	1,33	1,25
140	1,30	1,06	1,19	1,42	1,36	1,27
154	1,30	1,15	1,23	1,39	1,49	1,38
168	1,38	1,15	1,29	1,48	1,44	1,38

3.2.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

Abbildung 3.2.2: Diagramm mit Dehnungsverläufen

Tabelle 3.2.2a: Einzelwerte der Dehnungsmessungen

OB/UB	Ei	nwirkung Wass	er	Einwirku	ing NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	n/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,20	0,19	0,21	0,21	0,23	0,21
42	0,21	0,26	0,22	0,23	0,23	0,25
63	0,22	0,30	0,23	0,27	0,27	0,29
84	0,22	0,35	0,22	0,29	0,30	0,30
105	0,24	0,39	0,24	0,34	0,35	0,37
126	0,28	0,24	0,25	0,41	0,42	0,42
147	0,29	0,28	0,30	0,50	0,51	0,49
168	0,29	0,29	0,29	0,58	0,61	0,59
189	0,32	0,29	0,31	0,71	0,75	0,74
210	0,35	0,32	0,32	0,84	0,91	0,92
231	0,37	0,34	0,34	1,01	1,11	1,11
252	0,37	0,34	0,36	1,15	1,26	1,27

Tabelle 3.2.2b: Einzelwerte der Massebestimmungen

OB/UB	Ei	nwirkung Wass	er	Einwirku	ing NaCl-Lösun	g (3,6 %)
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	2,85	2,92	2,98	2,68	2,88	2,83
42	3,12	3,31	3,30	3,06	3,27	3,18
63	2,36	3,39	2,47	3,18	3,30	3,37
84	3,24	3,40	3,37	3,51	3,64	3,63
105	3,51	3,57	3,54	3,51	3,84	3,88
126	3,43	3,74	3,72	3,80	4,14	4,28
147	3,53	3,60	3,51	4,10	4,41	4,34
168	3,65	3,58	3,73	4,28	4,59	4,54
189	3,44	3,73	3,78	4,60	4,91	4,84
210	3,46	3,73	3,78	4,81	5,05	4,97
231	3,73	3,66	3,84	4,98	4,78	5,13
252	3,52	3,65	3,67	5,16	4,85	4,81

3.3 Betonzusammensetzung nach Alkali-Richtlinie

3.3.1 60°C-Betonversuch

Abbildung 3.6.1: Diagramm mit Dehnungsverlauf

Beton nach Alkali-RL.	60°C-Betonversuch								
Douor	Pro	bekörper 16	Pro	bekörper 17	Pro	bekörper 18			
Dauer	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung			
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]			
28	0,06	0,65	0,04	0,60	0,05	0,79			
56	0,07	0,65	0,09	0,62	0,10	0,84			
84	0,06	0,67	0,11	0,64	0,10	0,76			
112	0,06	0,80	0,13	0,67	0,10	0,81			
140	0,06	0,80	0,14	0,70	0,11	0,79			
168	0,08	0,85	0,16	0,74	0,14	0,85			
196	0,09	0,87	0,18	0,74	0,15	0,83			

3.3.2 40°C-Betonversuch (Nebelkammerlagerung)

Abbildung 3.3.2: Dehnungsverlauf

Abbildung 3.3.3: Rissweite der Würfel

 Tabelle 3.3.2a: Einzelwerte der Dehnungsmessungen, Massebestimmungen und Rissweite

Beton nach Alkali-RL.		40°C-Betonversuch						
Dauer	Pro	bekörper 19	Pro	bekörper 20	Pro	bekörper 21		
Dauei	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung		
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]		
6	0,14	0,83	0,14	0,85	0,13	0,77		
28	0,19	0,95	0,17	0,96	0,17	0,95		
56	0,19	0,98	0,18	0,99	0,16	1,01		
84	0,18	1,01	0,18	1,02	0,15	1,04		
112	0,21	1,08	0,21	1,11	0,18	1,09		
140	0,23	1,13	0,22	1,15	0,18	1,16		
168	0,22	1,13	0,23	1,15	0,19	1,13		
196	0,23	1,18	0,23	1,21	0,19	1,20		
224	0,24	1,17	0,24	1,21	0,19	1,19		
252	0,24	1,21	0,25	1,23	0,20	1,23		
280	0,26	1,23	0,24	1,27	0,22	1,25		
308	0,24	1,25	0,23	1,28	0,19	1,28		
Dauer [d]			Rissw	eite der Würfel [mm]				
6				0				
28				0				
56				0				
84				0				
112				0,1				
140		0,1						
168		0,1						
196				0,1				
224				0,1				
202				0,1				
200				0.1				
000		0,1						

4 Betonversuche mit der Gesteinskörnung GK4 (Kies)

3.4 Oberbeton 0/8 (Waschbeton) nach ARS 04/2013

4.1.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 4.1.1 Diagramm mit Dehnungsverläufen

Fabelle 4.1.1a Eir	nzelwerte der	Dehnungsmessun	gen
--------------------	---------------	----------------	-----

OB 0/8	Einwirkung NaCI-Lösung (3%)			Einwirkung NaCI-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[mi	m/m]		
14	0,06	0,07	0,06	0,10	0,10	0,10
28	0,10	0,10	0,10	0,17	0,17	0,17
42	0,12	0,14	0,14	0,27	0,26	0,26
56	0,14	0,16	0,15	0,39	0,35	0,35
70	0,16	0,16	0,18	0,47	0,45	0,45
84	0,18	0,20	0,19	0,57	0,56	0,56
98	0,21	0,24	0,22	0,71	0,68	0,66
112	0,24	0,26	0,25	0,79	0,80	0,74
126	0,26	0,30	0,27	0,95	0,90	0,87
140	0,28	0,30	0,28	1,02	0,98	0,95
154	0,28	0,32	0,30	1,21	1,07	1,04
168	0,26	0,32	0,29	1,16	1,16	1,13

Tabelle 4.1.1b Einzelwerte der Massebestimmungen

OB 0/8	Einwirkung NaCI-Lösung (3%)			Einwirkung NaCl-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[N	1%]		
14	0,53	0,65	0,50	0,74	0,79	0,79
28	0,78	0,85	0,86	1,02	1,07	1,10
42	0,87	0,99	0,89	1,19	1,27	1,32
56	1,01	1,10	1,00	1,47	1,47	1,44
70	1,07	1,18	1,14	1,47	1,53	1,55
84	1,21	1,27	1,17	1,56	1,70	1,75
98	1,26	1,33	1,25	1,67	1,78	1,75
112	1,32	1,41	1,31	1,75	1,89	1,80
126	1,40	1,47	1,39	1,84	1,95	1,91
140	1,49	1,50	1,37	1,87	1,95	1,91
154	1,43	1,61	1,45	1,95	2,09	2,03
168	1,51	1,61	1,45	1,95	2,06	2,03

4.1.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

 Tabelle 4.1.2a Einzelwerte der Dehnungsmessungen

OB 0/8	Einwirkung Wasser			Einwirkung NaCI-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	ח/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,26	0,28	0,24	0,31	0,26	0,30
42	0,29	0,31	0,25	0,32	0,29	0,30
63	0,33	0,34	0,28	0,35	0,31	0,32
84	0,32	0,33	0,29	0,38	0,35	0,37
105	0,31	0,33	0,29	0,42	0,38	0,39
126	0,29	0,35	0,29	0,48	0,44	0,45
147	0,35	0,38	0,32	0,57	0,49	0,54
168	0,31	0,39	0,31	0,63	0,54	0,59
189	0,34	0,37	0,30	0,69	0,57	0,64
210	0,32	0,37	0,30	0,79	0,63	0,71
231	0,32	0,36	0,32	0,86	0,68	0,77
252	0,31	0,35	0,30	0,93	0,71	0,83

Tabelle 4.1.2b	Einzelwerte der	Massebestimmung
----------------	-----------------	-----------------

OB 0/8	Einwirkung Wasser			Einwirkung NaCl-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	3,54	3,18	2,97	2,84	2,76	2,74
42	3,43	3,49	3,34	3,26	2,71	3,14
63	4,01	3,83	3,67	3,91	3,84	3,90
84	3,92	3,74	3,80	4,15	4,17	4,23
105	3,94	3,84	3,58	4,35	4,40	4,32
126	4,04	3,92	3,72	4,46	4,27	4,54
147	4,02	3,92	3,61	4,68	4,13	4,64
168	4,09	3,92	3,64	4,94	4,31	4,86
189	4,10	3,98	3,62	5,11	4,51	5,02
210	3,87	3,68	3,61	5,17	4,64	5,18
231	3,78	3,67	3,65	5,20	5,03	5,34
252	3,82	3,65	3,35	5,19	4,53	5,27

3.5 Oberbeton D>8/Unterbeton nach ARS 04/2013

4.2.1 60°C-Betonversuch mit externer Alkalizufuhr (3% und 10%)

Abbildung 4.2.1 Diagramm mit Dehnungsverläufen

Tabelle 4.2.1a Einzelwerte der Dehnungsmessungen

OB/UB	Einwirkung NaCI-Lösung (3%)			Einwirkung NaCl-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[m	m/m]		
14	0,08	0,05	0,05	0,07	0,09	0,09
28	0,09	0,09	0,06	0,09	0,10	0,11
42	0,10	0,09	0,07	0,11	0,12	0,12
56	0,12	0,11	0,12	0,12	0,15	0,14
70	0,15	0,14	0,15	0,15	0,19	0,17
84	0,15	0,15	0,14	0,16	0,25	0,20
98	0,16	0,15	0,16	0,21	0,32	0,23
112	0,19	0,18	0,18	0,26	0,42	0,29
126	0,18	0,19	0,17	0,24	0,40	0,29
140	0,19	0,17	0,18	0,23	0,39	0,28
154	0,14	0,12	0,13	0,29	0,49	0,33
168	0,17	0,15	0,16	0,32	0,54	0,36

Tabelle 4.2.1b Einzelwerte der Massebestimmung

OB/UB	Einwirkung NaCI-Lösung (3%)			Einwirkung NaCl-Lösung (10 %)		
Dauer	Probekörper 4	Probekörper 5	Probekörper 6	Probekörper 7	Probekörper 8	Probekörper 9
[d]			[N	1%]		
14	0,68	0,45	0,61	0,61	0,91	0,82
28	0,67	0,80	0,68	0,83	0,92	1,02
42	0,88	0,91	0,97	1,00	1,14	1,19
56	0,87	0,89	1,06	1,06	1,21	1,33
70	1,01	1,01	0,98	1,12	1,27	1,31
84	1,08	1,19	1,11	1,21	1,39	1,37
98	1,17	1,27	1,38	1,37	1,43	1,44
112	1,27	1,32	1,33	1,36	1,61	1,64
126	1,30	1,32	1,30	1,47	1,60	1,63
140	1,35	1,32	1,27	1,55	1,60	1,63
154	1,32	1,46	1,43	1,49	1,73	1,63
168	1,40	1,40	1,38	1,49	1,65	1,58

4.2.2 Klimawechsellagerung mit H₂O - und NaCl-Beaufschlagung

Abbildung 4.2.2: Diagramm mit Dehnungsverläufen

Tabelle 4.2.2a: Einzelwerte der Dehnungsmessungen

OB/UB	Einwirkung Wasser			Einwirkung NaCl-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[mn	n/m]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	0,18	0,28	0,19	0,20	0,21	0,21
42	0,15	0,27	0,19	0,24	0,22	0,23
63	0,17	0,29	0,19	0,28	0,24	0,25
84	0,18	0,30	0,20	0,35	0,27	0,28
105	0,18	0,29	0,18	0,36	0,31	0,32
126	0,18	0,30	0,20	0,43	0,37	0,36
147	0,22	0,32	0,24	0,56	0,47	0,43
168	0,19	0,31	0,22	0,69	0,53	0,48
189	0,20	0,32	0,23	0,85	0,68	0,58
210	0,21	0,33	0,24	0,97	0,81	0,70
231	0,23	0,35	0,24	1,15	0,98	0,84
252	0,23	0,35	0,25	1,29	1,10	0,96

Tabelle 4.2.2b: Einzelwerte der Massebestimmungen

OB/UB	Einwirkung Wasser			Einwirkung NaCI-Lösung (3,6 %)		
Dauer	Probekörper 10	Probekörper 11	Probekörper 12	Probekörper 13	Probekörper 14	Probekörper 15
[d]			[M.	-%]		
4	0,00	0,00	0,00	0,00	0,00	0,00
21	2,86	3,09	3,06	2,90	2,84	2,96
42	3,19	3,39	3,25	3,22	3,22	3,24
63	2,62	3,25	2,60	3,37	3,25	3,36
84	3,21	3,44	3,28	3,65	3,53	3,61
105	3,25	3,44	3,47	3,89	3,79	3,80
126	3,32	3,41	3,46	4,35	4,14	4,44
147	3,24	3,31	3,38	4,12	4,19	4,10
168	3,29	3,41	3,43	4,65	4,71	4,27
189	3,31	3,33	3,42	4,92	4,91	4,68
210	3,33	3,48	3,48	5,16	5,12	4,93
231	3,26	3,48	3,55	5,29	5,21	5,12
252	3,23	3,18	3,43	5,45	5,18	5,30

4.3 Betonzusammensetzung nach Alkali-Richtlinie

4.3.1 60°C-Betonversuch

Abbildung 4.7.1: Diagramm mit Dehnungsverlauf

belle 4.3.1: Einzelwerte der Dehnungsmessungen und Massebestimmungen
--

Beton nach Alkali-RL.			60°C-I	Betonversuch		
Douor	Pro	bekörper 16	Pro	bekörper 17	Pro	bekörper 18
Dauer	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]
28	0,04	0,57	0,05	0,43	0,05	0,44
56	0,04	0,73	0,05	0,48	0,06	0,49
84	0,04	0,62	0,06	0,50	0,05	0,54
112	0,05	0,66	0,06	0,54	0,06	0,58
140	0,07	0,71	0,06	0,60	0,06	0,63
168	0,07	0,71	0,07	0,61	0,07	0,62
196	0,08	0,74	0,08	0,66	0,08	0,67

1,0 וס **Gk4-Kies** Dehnung [mm/m] Ж Grenzwert & 0,5 Т ЧЖ Ж Ж Ж Ж Ж Ж Ж Ж I 0,0 0 28 56 84 112 140 168 196 224 252 280 308 Lagerungsdauer [d] Abbildung 4.3.2: Dehnungsverlauf **Rissbreite [mm]** 0,5 0,0 270 d Grenzwert

112 140 168 Lagerungsdauer [d]

Ж

224

ж

196

Ж

252

280

308

4.3.2 40°C-Betonversuch (Nebelkammerlagerung)

Abbildung 4.3.3: Rissweite der Würfel

Tabelle 4.3.2a: Einzelwerte der Dehnungsmessungen, Massebestimmungen und Rissweite

Beton nach Alkali-RL.			40°C-	Betonversuch		
Daviar	Pro	bekörper 19	Pro	bekörper 20	Pro	bekörper 21
Dauer	Dehnung	Massenänderung	Dehnung	Massenänderung	Dehnung	Massenänderung
[d]	[mm/m]	[M%]	[mm/m]	[M%]	[mm/m]	[M%]
6						
28	0,20	0,88	0,21	0,93	0,16	1,00
56	0,19	0,92	0,20	0,96	0,15	1,04
84	0,18	0,94	0,19	0,99	0,14	1,10
112	0,19	0,99	0,22	1,03	0,16	1,14
140	0,20	1,03	0,22	1,09	0,18	1,19
168	0,18	1,04	0,22	1,05	0,15	1,17
196	0,19	1,07	0,21	1,11	0,15	1,22
224	0,21	1,05	0,22	1,10	0,17	1,21
252	0,19	1,09	0,22	1,15	0,17	1,25
280	0,21	1,12	0,22	1,18	0,18	1,29
308	0,21	1,13	0,23	1,18	0,18	1,28
Dauer [d]			Rissw	eite der Würfel		
_ <u>[</u> ∝] 6				0		
28				0		
56				0		
84				0		
112				0		
140				0		
168				0		
224				0		
252				0		
280				0		
308				0		

Anlage A5

AKR-Identifikationsprüfung mittels Dünnschliffmikroskopie - verschiedenartig hergestellte Laborbetone

Inhalt

1	Ergebnisübersicht	. 2
2	Beschreibung durchgeführter petrografischer Untersuchungen	. 3
3	Einzelergebnisse der 60°C Betonversuche mit externer Alkalizufuhr	. 5
4	Einzelergebnisse der Klimawechsellagerung mit H2O- und NaCI- Beaufschlagung	25

Seite 2 von 49 Seiten

1 Ergebnisübersicht

Tabelle 1: Zusammenfassung der Ergebnisse der Dünnschliffmikroskopie zur AKR-Identifikation aller Probekörper

	Beto	n nach	Art de	r Perforn	nancep	rüfung					Befur	nd dei	r Dün	nschli	iffmik	rosko	pie		
	ARS	04/2013	60 °C Alkal	-BV mit izufuhr	K	WL nit			На	auptbo	estand	dteile	der g	roben	GK		Ausprä de	ägung er	
Bezeichnung des Dünnschliffs	ston 0/8	ston (D>8) beton	NaCI-Lö-	e NaCI-Lö-	NaCI-L.	H ₂ O	üfsand	ţ			acke		ein	schiefer		in	AKR	SEB	Befund der AKR- provozierenden La- gerung
	Oberbe	Oberbe /Untert	3 %ige sung	10 %ig sung	Be schla	auf- agung	WS-Pri	Rhyolit	Basalt	Granit	Grauwa	Quarzi	Sandst	Kiesels	Flint	Tonste	Merk	male	
GK 2 (2-08-60-3)	Х	-	Х	-		-	-	-	-	-	Х	-	-	-	-	-	(+)	++	
GK 3 (3-08-60-3)	Х	-	Х	-	-	-	-	X	-	-	-	-	-	-	-	-	(+)	++	
GK 1 (1-08-60-10)	Х	-	-	Х	-	-	-	X	-	-	-	X	X	Х	X	-	+++	(+)	
GK 2 (2-08-60-10)	Х	-	-	Х	-	-	-	-	-	-	X	-	-	-	-	-	+++	-	
GK 3 (3-08-60-10)	Х	-	-	Х	-	-	-	Х	-	-	-	-	-	-	-	-	+++	-	
GK 1 (1-22-60-10)	-	Х	-	Х	-	-	X	Х	-	-	-	X	Х	Х	X	-	+++	(+)	
GK 2 (2-22-60-10)	-	X	-	Х	-	-	X	-	-	-	X	-	-	-	-	-	+++	-	
GK 3 (3-22-60-10)	-	Х	-	Х	-	-	X	Х	-	-	-	-	-	-	-	-	+++	-	
GK 1 (1-08-KWL H ₂ O)	Х	-	-	-	-	X		X	-	-	-	X	X	Х	X	-	++	+	
GK 3 (3-08-KWL H ₂ O)	Х	-	-	-	-	Х		Х	-	-	-	-	-	-	-	-	-	+	
GK 1 (1-08-KWL NaCl)	Х	-	-	-	Х	-		Х	-	-	-	X	Х	Х	Х		+++	++	
GK 2 (2-08-KWL NaCl)	Х	-	-	-	Х	-	X	-	-	-	X	-	-	-	-	-	+++	+++	
GK 3 (3-08-KWL NaCl)	Х	-	-	-	Х	-	X	X	-	•	-	-	-	-	-	-	+++	++	
GK 4 (4-08-KWL NaCl)	Х	-	-	-	Х	-		-	-	-	X	Х	X	-	-	X	+ ¹⁾	+++	
GK 2 (2-22-KWL NaCl)	-	Х	-	-	X	-		-	-	-	X	-	-	-	-	-	+++	+++	
GK 3 (3-22-KWL NaCl)	-	X	-	-	X	-		X	-	-	-	-	-	-	-	-	+++	+++	
GK 4 (4-22-KWL NaCl)	-	Х	-	-	X	-	X	-	-	-	X	X	X	-	-	X	+++ ¹⁾	++	

Legende:

x	Herkunft des AKR-Gels im Dünnschliff	-	Kein Merkmal erkennbar	+	vereinzelte Merkmale	++	häufig ein- deutige Merkmale	+++	vorhandene Merkmale im betonschädigenden Ausmaß		unter nahe über
---	---	---	---------------------------	---	-------------------------	----	------------------------------------	-----	---	--	-----------------------

1) Besonderheit bei den Proben mit GK4 in den Fraktionen 8/16 mm und 16/22mm: AKR ja, aber wenn, dann an der Sandfraktion

2 Beschreibung durchgeführter petrografischer Untersuchungen

Die in dieser Arbeit durchgeführten petrographischen Untersuchungen von Betonproben umfassen die Feststellung des mineralogischen Aufbaus und des Gefüges sowie die Identifikation von Schadensmerkmalen, bevorzugt jene, die durch eine Alkali-Kieselsäure-Reaktion (AKR) hervorgerufen werden. Für die Untersuchung der Betonproben werden Dünnschliffe (DS) hergestellt. Dies sind ca. 25-30 µm dünne Plättchen der zu untersuchenden Probe, befestigt auf einem Glasträger, an denen die kristallografischen Eigenschaften der Gesteine und Minerale exakt bestimmt werden können. Zudem können kleinste Risse, sowohl in der Gesteinskörnung (GK) wie auch in der Zementsteinmatrix (ZSM), detailreich visualisiert werden. Die DS-Mikroskopie ist ein essentielles Untersuchungsverfahren der Mineralogie und Petrologie.

Bei der Präparation der Betonproben werden diese mit einem unter UV-Licht fluoreszierendem Epoxidharz eingebettet. Dies bildet die Grundlage für die Bestimmung etwaiger Rissstrukturen im Betonprobekörper. Die weitere wasserfreie Präparation erfolgt mittels mehrerer Schneid- und Schleifphasen. Als Kühlmittel beim Schneiden der Proben wird zumeist Petroleum eingesetzt. Für die Durchführung der petrographischen Untersuchung kommt vorrangig das Polarisationsmikroskop (PLM) Axioskop 40 der Firma Zeiss ?? (Abbildung 2.1). Das Mikroskop ist mit einer Auflicht-Fluoreszenz-Einrichtung sowie einer Kamera für hochauflösende Bildverarbeitungen (AxioCam MRc5 mit der Software Axiovision der Firma Zeiss) ausgestattet.

Abbildung 2.1: Polarisationsmikroskop

Die anschließende ausführliche petrographische Untersuchung der DS erfolgt mit dem PLM. Dabei werden die Proben nach folgendem Schema untersucht:

- Charakterisierung der GK > 2 mm
- Art der GK < 2 mm
- Charakterisierung der Porenfüllung
- Risscharakterisierung
- Zusammenfassende Bewertung der AKR und SEB-Schadensmerkmale
- Dokumentation mikroskopischer Aufnahmen

Die bei der Dokumentation der Untersuchungsergebnisse verwendeten Abkürzungen sind der Tabelle 1 zu entnehmen. Die Kriterien für die zwei- und dreidimensional Charakterisierung der Kornform der Gesteinskörnung mittels Sphärizität und Rundungsgrad sind der Tabelle 2 dargestellt.

Abkürzung	Definition
AKR	Alkali-Kieselsäure-Reaktion
AKRP	Alkali-Kieselsäure-Reaktionsprodukt
DS	Dünnschliff
GK	Gesteinskörnung
LPL	linear polarisiertes Licht
OB	Oberbeton
PLM	Polarisationsmikroskop
QSF	Querscheinfuge
SEB	sekundäre Ettringitbildung
UB	Unterbeton
WB	Waschbeton
XPL	gekreuzte Nicols
ZSM	Zementsteinmatrix

 Tabelle 2.1
 Verwendete Abkürzungen

Tahalla 2 2 Rundungsgrad von	Körnern mit geringer u	ind hoher Sphärizität in	Anlehnung an [1]
abone Ziz Kundungsgrad von	Konnenn mit gennger o	na noner opnanzitat in	

			Rundung	gsgrad		
Sphärizität	gut gerundet	gerundet	angerundet	subangular	angular	stark angular
gering				\sim	Ì	
hoch	\bigcirc					

[1] Pettijohn, F.J., Potter, P.E. und Siever R. (1973): Sand and Sandstones. Springer-Verlag, New York, Berlin, Heidelberg, 617 Seiten.

3 Einzelergebnisse der 60°C Betonversuche mit externer Alkalizufuhr

Tabelle 3a: Befund der petrografischen Untersuchungen der Probe 2-08-60-3 (Grauwacke) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	OB ()/8 (WB) nach A	ARS 04/2013	AKR-Prüfverfal	nren:	60°C BV mit ext. A	Alkalizufuhr (3%	%)
В	ild 25				Bild 26			Bild 27	7	
							A States			
Eingebettet in eine Ma	trix aus	Zementstein,	feiner	Zu sehen sind Ri	isse in einem Ko	orn und Rissfortset-	Es gibt	zahlreiche Bereiche ir	n Zementstein, di	ie
Gesteinskörnung und	vielen	Poren findet	man	zung in die Matrix	x. Dort angeordr	net findet man zahl-	mit Ris	sen netzartig durchzog	gen sind. In solch	en
grobe gebrochene Kö von Rissen durchzoger	rner (G n sind.	rauwacke), die	e z.T.	reiche Poren, wo aktionsprodukter Hinweis für eine	bei viele randlich n gefüllt sind, w AKR anzuseher	n mit gelartigen Re- vas als eindeutiger n ist.	Gefüge Ettringi	ebereichen konzentrier It gefüllt sind.	t sind Poren, die I	mit
Fazit:										
Legende:> Et	tringit	Ał	KR-Ge	el 🗕 F	Rissverlauf					

Seite 6 von 49 Seiten

Tabelle 3b: Befund der petrografischen Untersuchungen der Probe 2-08-60-3 (Grauwacke) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	OB 0/8 (WB) nach ARS 04/2013	AKR-Prüfverfahren:	60°C BV mit ext. Alkalizufuhr (3%)
В	ild 28				
			50 µm		
Im Bild sind Poren zu Ettringit bedeckt sind. E sehen, die randlich auc Gel enthält.	erkenne s ist abe h gering	n, die randlic ar auch eine Po ge Mengen an	ch mit ore zu AKR-		
Legende:> Ett	tringit	Al	KR-Gel Rissverlauf		

Tabelle 4a: Befund der petrografischen Untersuchungen der Probe 3-08-60-3 (Rhyolith) mittels Polarisationsmikroskopie

Seite 8 von 49 Seiten

Tabelle 4b: Befund der petrografischen Untersuchungen der Probe 3-08-60-3 (Rhyolith) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart: C	OB 0/8 (WB) nach ARS 04/2013	AKR-Prüfverfahi	ren: 60°C F	3V mit ext. Alkali	zufuhr (3%)
В	ild 32		Bild 33			Bild 34	
Man findet zahlreiche F gefüllt sind. Die Poren ständig gefüllt, aber vo ringitbildung trotzdem b	Poren, d hier im n der M bemerke	ie mit Ettringitnad Bild sind nicht v lenge her ist die l nswert.	Ieln Die Poren hier im Bild sind nicht ^{roll-} aber von der Menge her ist die Et tett- dem bemerkenswert.	vollständig gefüllt, tringitbildung trotz-	Zu sehen ist de einer SEB im B sind in einer Po schen Gestein diesen geweitet massiv gefunde Einzelfall für die	r Ablauf und das Scl etongefüge. Nadlige re bzw. in einem Zw skörnern angereich t. Ettringit wird an di en, was jedoch in der e Probe darstellt.	nadenspotenzial Ettringitkristalle ischenraum zwi- iert und haben eser Stelle auch Intensität einen
Legende:> Ett	tringit	AKR	R-Gel Rissverlauf				

Seite 9 von 49 Seiten

|--|

Gesteinskörnung:	GK1	Betonart:	OB 0/8 (WB) nach ARS 04/2	2013 A	KR-Prüfverfah	ren:	60°C BV mit ext. Alkalizufuhr (10%)
E	Bild 1		Bil	d 2			Bild 3
Dokumentation bei 12 Bild sind zahlreiche Por Gel gefüllt zu sehen, e Rissen, Gefügeschädig	5-fachei en im Ze s gibt, s ungen ir	r Vergrößerung ementstein mit / sichtbar anhand m Zementstein.	g. Im Typischer Ablauf einer AK AKR- d von den Pore AKR-Gel.	R an einer Riss im Ko s und in ei	m quarzitischen orn, Rissfortset- ner angrenzen-	Sandsto Gelabla	einkorn mit randlicher Reaktion und AKR- agerung in angrenzenden Poren.
Legende:> Ett	tringit	Ak	KR-Gel Rissverla	uf			

Seite 10 von 49 Seiten

Tabelle 5b: Befund der petrographischen Untersuchungen der Probe 1-08-60-10 (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	OB (0/8 (WB) nach ARS 04/2013	AKR-Prüfverfal	nren:	60°C BV mit ext. Alkalizufuhr (10%)
E	3ild 4			Bild 5	-		Bild 6
			500 µm				
Reaktionssaum aus Ak Mikroquarzkornes.	.R-Gel a	ın einer Stelle	eines	Randbereich eines Rhyolithkorne Grundmasse. An der Kornoberflä onssaum aus AKR-Gel erkennba ner AKR-Gelablagerung in einer Kornes.	es mit Rissen in der ache ist ein Reakti- ar. Identifikation ei- Pore am Rand des	Großflä ren des	ächige, massive AKR-Gelbildung in den Po- s Zementsteins.
Legende:> Ett	ringit	Ał	<r-ge< td=""><td>el> Rissverlauf</td><td></td><td></td><td></td></r-ge<>	el> Rissverlauf			

Seite 11 von 49 Seiten

Gesteinskörnung:	GK1 Be	etonart: (OB 0/8 (WB)) nach ARS 04	4/2013	AKR-Prüfverfah	ren:	60°C BV mit ext. Alkalizufuhr (10%)
Bi	ld 7			E	Bild 8			
Ettringit in den Poren d handelt es sich nicht um sind stellenweise auch vo	des Zemen einen Einz ollständig g	ntsteines. Da zelfall, die Po gefüllt.	abei Im Bild hen, die sind. Ar durch T	st ein Zements mit AKR-Gel a dieser Stelle v reibprozesse sid	teinbereich aber auch i vird eine G chtbar.	n mit Poren zu se- mit Ettringit gefüllt Sefügeschädigung		
Legende:> Ettri	ingit –		R-Gel 🗕		rlauf			

Tabelle 5c: Befund der petrographischen Untersuchungen der Probe 1-08-60-10 (Kies) mittels Polarisationsmikroskopie

Seite 12 von 49 Seiten

Tabelle 6a: Befund der petrografischen Untersuchungen der Probe 2-08-60-10 (Grauwacke) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	OB 0/8 (WB) nach ARS 04/2013	AKR-Prüfverfah	ren:	60°C BV mit ext. Alkalizufuhr (10%)				
E	Bild 9		Bild 10		Bild 11					
	A State The Party of the									
Das Bild dokumentiert tenzial der Grauwackek Risse zu erkennen, eine dem Riss aus gesehen eine Pore in der Nähe füllt.	das ho örner. li e Rissfo erfolgt ist mas	ohe Schädigun m Korn sind me rtsetzung fast v in die Matrix h siv mit AKR-G	gspo- ehrere on je- inein, el ge-	tsetzung in die Mat- im Rissverlauf und trahlige Risse netz- hohe Schadenspo- körner.	Das Bilc nebeneir und die schen be	d zeigt zwei Grauwackekörner unmittelbar nander. Beide sind mit Rissen durchsetzt Risse beider Körner befüllen die Pore zwi- eiden Körnern.				
Legende:> Ett	Legende:> Ettringit> AKR-Gel> Rissverlauf									

Tabelle 6b: Befund der petrografischen Untersuchungen der Probe 2-08-60-10 (Grauwacke) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	OB 0	0/8 (WB) nach ARS 04/2013	AKR-Prüfverfal	hren:	60°C BV mit ext. Alkalizufuhr (10	%)
B	Bild 12			Bild 13			Bild 14	
								500 µm
AKR-Gel an den Rände	ern eine	r Pore.		Das Bild zeigt eine massive Sch ges durch relativ hohe Gelmer Grauwacke (Korn rechts) freige Poren sind fast alle vollständig m das Korn links, ein quarzitisches Schadensprozess beteiligt.	ädigung des Gefü- ngen, die aus der esetzt werden. Die nit Gel gefüllt. Auch s Sandkorn, ist am	Riss in hend n und ka	n Sandkorn, Rissfortsetzung von dort aus ietzartig, nur die Gelmengen hier sind ge ium festzustellen.	sge- ering
Legende:> Et	tringit	→ A	KR-Ge	el> Rissverlauf				

Seite 14 von 49 Seiten

Tabelle 6c: Befund der petrografischen Untersuchungen der Probe 2-08-60-10 (Grauwacke) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	OB 0/8 (WB) nach ARS 04/2013	AKR-Prüfverfahren:	60°C BV mit ext. Alkalizufuhr (10%)
В	ild 15		Bild 16		
Die feine Fraktion zeigt erkennen sind ein Ris zung in die Matrix und sowie Gelablagerung ir	typische s im Sa dort sich i der Po	AKR-Merkmal indkorn, Rissfo n auch verzweiç re.	le. Zu stellenweise, von der Menge a man auch Ettringit in den Poren Das Grauwackekorn rechts im B sen durchsetzt, die Rissbildung s tet auch in der Matrix fort. In den hat sich aber kein Gel, sondern B Die Poren sind nicht vollständig g ist deutlich nachweisbar.	aber gering, findet des Zementsteins, ild ist von Mikroris- setzt sich angedeu- Poren in der Nähe Ettringit abgelagert. refüllt, aber Ettringit	
Legende:> Et	tringit	→ Ak	KR-Gel Rissverlauf		

Seite 15 von 49 Seiten

Tabelle 7a: Befund der petrografischen Untersuchungen der Probe 3-08-60-10 (Rhyolith) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	OB 0/8 (WB) nach ARS 04/2013	AKR-Prüfverfahr	en: 60°C BV mit ext. Alkalizufuhr (10%)
В	ild 17		Bild 18		Bild 19
Das Gefüge ist dicht, g körner sind eingebette	grobe g t in ein	ebrochene Rhy e Matrix aus f	yolith- teinen bas Bild zeigt die typischen AKR tons mit GK3, Riss im Korn (Rh	-Merkmale des Be- y), Rissfortsetzung	Gelablagerung im Risskanal parallel zur Kornober-
Körnern und Zementste sen Risse auf, die sich s fortsetzen.	ein. Die stellenw	Rhyolithkörne veise im Zemen	r wei- verzweigt in der Matrix und am itstein eine Pore mit Gel gefüllt.	Ende des Risses	
Legende:> Ett	tringit		KR-Gel Rissverlauf		

Tabelle 7b: Befund der petrografischen Untersuchungen der Probe 3-08-60-10 (Rhyolith) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	OB 0/8 (WB) nach ARS 04/2013	AKR-Prüfverfahre	n: 60°C BV mit ext. Alkalizufuhr (10%)
В	ild 20		Bild 21		Bild 22
Im Bild sind netzartige der Verursacher bleibt unklar, da kein grobes Gefüge ist gekennzeich die sich am Rand von geordnet haben. Dort v auch Ettringit gefunder als Pufferraum für Treit	Risse ir an dies Korn in nnet dur groben wird häu n, wobei bprozes	m Gefüge zu so er Stelle erst e der Nähe liegt ch zahlreiche P Rhyolit-Körner ifig Gel, stellen die Poren durc se dienen könn	ehen, Das Bild zeigt einen typischem G inmal + gefüllte Pore). Es sind doo . Das Rhyolith-Körner betroffen, die g fortsetzung in die Matrix verursa n an- weise chaus en.	efügebereich (Riss Ris ch sehr zahlreiche erissen sind, Riss- achen und Gel bil-	sse im Korn deuten auf ein hohes Potential hin.
Legende:> Et	tringit	Ał	KR-Gel> Rissverlauf		

Seite 17 von 49 Seiten

Tabelle 7c: Befund der petrografischen Untersuchungen der Probe 3-08-60-10 (Rhyolith) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	OB 0/8 (WB) nach ARS 04/20	13 AKR-Prüfver	fahren:	60°C BV mit ext. Alkalizufuhr (10%)
Bile	d 23		Bild	24		
Das Bild dokumentiert ein Riss und Rissaustritt, in au Gelablagerung. Die Pore gefüllt und von der Pore alstrahlig aus.	h weite ngrenz e ist fas gehen	res Rhyolit-Kor tender Pore deu weitere Risse	n mit utlich it Gel radi-	uch stressquarzhalti Risse und Rissforts Heindeutig belegt.	ge et-	
Legende:> Ettri	ngit	→ AK	R-Gel —> Rissverlaut	:		

 Tabelle 8a:
 Befund der petrographischen Untersuchungen der Probe 1-22-60-10 mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	OB (D>8)/UB nach ARS 04/2013	AKR-Prüfverfahren	: 60°C BV mit ext. Alkalizu	ıfuhr (10%)		
В	ild 35		Bild 36		Bild 37			
In den Poren, die am R liegen, zeigen sich AKR	and des R-Ablage	s groben Kiesk srungen.	ornes Offensichtlich kommt es zu ein Anlösen des Kornes und dara Gelbildung, wie das das Bild ein	em oberflächlichen In e us resultierend der mar drucksvoll belegt. Kori	inem Lunker eines groben Kiesko n an zwei Stellen Ablagerung von n besteht aus Stressquarzbereich	rnes findet Gel. Das en		
Legende:> Ettringit> AKR-Gel> Rissverlauf								

Seite 19 von 49 Seiten

Tabelle 8b: Befund der petrographischen Untersuchungen der Probe 1-22-60-10 mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	OB (D>8)/UB nach ARS 04/2013	AKR-Prüfverfal	nren:	60°C BV mit ext. Alkalizufuhr (10%)		
В	ild 38			Bild 39	•		Bild 40		
Dokumentiert sind hier nen Quarzkornes aus d Anlöseerscheinungen u angrenzenden Poren ei	anhand lem Kies ind Gela ine AKR	eines mikrokr s mit oberfläch ablagerungen i	istalli- lichen n den	Die typischen Merkmale einer Korn, Rissfortsetzung in die Mat Poren, und dort massive Gelabla digung an einem Rhyolithkorn de hier dokumentiert	AKR, wie Riss im rix, hier bis zu den agerung und Schä- er Kiesfraktion sind	Das Bi nes eir ausgeh grenze	ld zeigt auf der Oberfläche eines Quarzkor- nen Reaktionssaum aus AKR-Gel. Von dort nend erfolgt auch die Porenfüllung von an- nden Poren im Gefüge.		
Legende:> Ettringit> AKR-Gel> Rissverlauf									

Seite 20 von 49 Seiten

Gesteinskörnung:	GK1	Betonart:	OB (D>8)/UB nach	ARS 04/2013	AKR-Prüfverfahı	ren:	60°C BV mit ext. Alkalizufuhr (10%)
В	ild 41			Bild 42			
Das Bild zeigt ein Flint Reaktionssaum und m grenzend in den Poren Körnern der feinen Ges auszuschließen	korn au assiver . Eine <i>F</i> steinskö	is Sandfraktior Gelablagerun AKR ausgehen rnung ist somi	n? mit g an- d von : nicht : nicht	eschädigung duro . Dort in den Pol auch AKR-Gel, s eider Prozesse in	ch netzartige Risse ren findet man Ett- so dass es zu einer n Beton gekommen		
Legende:> Ett	ringit	→ A	KR-Gel	Rissverlauf			

Tabelle 8c: Befund der petrographischen Untersuchungen der Probe 1-22-60-10 mittels Polarisationsmikroskopie

Seite 21 von 49 Seiten

Tabelle 9a: Befund der petrographischen Untersuchungen der Probe 2-22-60-10 mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	OB (D>8)/UB nach ARS 04/2013	AKR-Prüfverfahren:		60°C BV mit ext. Alkalizufuhr (10%)			
Bild 43				Bild 44			Bild 45			
Typischer Schadensme Risse im Korn, Rissfort dort AKR-Gel im Risska den Poren.	chanisr setzung anal unc	nus mit Grauwa en in die Matria d in den angren	acke, < und zen-	Typischer Schadensmechanismu Risse im Korn, Rissfortsetzunger dort AKR-Gel im Risskanal und i den Poren.	us mit Grauwacke, n in die Matrix und n den angrenzen-	Typisch Risse in dort Ak den Po	her Schadensmechanismus mit Grauwacke, m Korn, Rissfortsetzungen in die Matrix und KR-Gel im Risskanal und in den angrenzen- oren.			
Legende:> Ettringit> AKR-Gel> Rissverlauf										

Seite 22 von 49 Seiten

Gesteinskörnung:	GK2	Betonart:	OB (D>8)/UB nach /	ARS 04/2013	AKR-Prüfverfal	nren:	60°C BV mit ext.	Alkalizufuhr (10%
Bild 46					Bild 47				
Zu sehen sind Gelabla mentsteins, auch ein R nen Ursprung im Korn Korn handelt es sich au ein Sandkorn aus Qu Sand.	agerunge Riss ist z links im us der Ku Jarz (Mi	en in Poren de u erkennen, de Bild hat. Bei d orngröße hera kroquarz), AK	es Ze- er sei- iesem us um R mit	Bildung von AK ebenfalls eher de muss. Riss im K Ablagerung des typische Merkma beobachtet werd	KR-Gel aus eine er Sandfraktion z Korn, Rissfortsetz Gels in den Pore ale einer AKR, di len können.	em Korn, welches ugeordnet werden zung in die Matrix, n in der Nähe sind ie an diesem Korn			
Legende:> Et	tringit	→ A	KR-Ge	el 🔶 F	Rissverlauf				

Tabelle 9b: Befund der petrographischen Untersuchungen der Probe 2-22-60-10 mittels Polarisationsmikroskopie
Seite 23 von 49 Seiten

Tabelle 10a: Befund der petrographischen Untersuchungen der Probe 3-22-60-10 (Rhyolith) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	OB ((D>8)/UB nach ARS 04/2013	AKR-Prüfverfal	nren:	60°C BV mit ext. Alkalizufuhr (10%)
В	ild 48			Bild 49			Bild 50
Typischen Merkmale ei Rhyolithkorn, Riss im k Matrix bis zu einer Por findet man Gelablageru	iner AKI Korn, Ri e. Im R ng	R mit einem gro ssfortsetzung ir iss und in der	oben n die Pore	Dieses Bild dokumentiert anhand ten Risses in einem Rhyolithkor zenden mit Gel gefüllt Pore das AKR im Betongefüge der Probe (d eines angedeute- n und der angren- s Stattfinden einer GK3.	Eine A ein Kor dem Sa mit Gel halt.	KR mit den typischen Merkmalen zeigt hier m der feinen Gesteinskörnung. Der Riss in andkorn (im Bild unten), darüber eine Pore ablagerung, dokumentieren diesen Sachver-
Legende:> Ett	ringit	> AK	(R-Ge	el> Rissverlauf			

Seite 24 von 49 Seiten

Tabelle 10b: Befund der petrographischen Untersuchungen der Probe 3-22-60-10 (Rhyolith) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	OB (D>8)/UB nach ARS 04/2013	AKR-Prüfverfahren:	60°C BV mit ext. Alkalizufuhr (10%)
В	ild 51		Bild 52		
Auch hier ist der Ablauf korn zu sehen. Das feir ist in Zersetzung begriff das Gel in den beiden stammt.	einer A de Geste en, so o Poren a	KR mit einem S einskorn links in dass möglicherv aus diesem Pro	Sand- Das Gefüge des Betons wird von durchzogen. Diese sind meist leimentstein gefüllt.	zahlreichen Poren er, manche mit Ze-	
Legende:> Ett	tringit	Ał	KR-Gel> Rissverlauf	I	

4 Einzelergebnisse der Klimawechsellagerung mit H₂O- und NaCl- Beaufschlagung

Tabelle 11a: Befund der petrographischen Untersuchungen der Probe 1-08-KWL-H₂O (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahre	en: Klimawechsellagerung (H ₂ O)
В	ild 53		Bild 54		Bild 55
Am Rande des groben erkennen, randlich mit Korn sind angedeutet.	Kieskor AKR-G	rnes ist eine Pore Sel gefüllt. Risse	zu Das Bild zeigt ein mit Rissen du korn (feine Gesteinskörnung). des Kornes hin zur Pore danebe Gel (gering, von der Menge her	urchzogenes Sand- An der Oberfläche aber nachweisbar).	With the second seco
Legende:> Et	tringit	AKR	-Gel		

Seite 26 von 49 Seiten

Tabelle 11b: Befund der petrographischen Untersuchungen der Probe 1-08-KWL-H₂O (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	A	kali-Richtline des DAfStb	AKR-Prüfverfal	nren:	Klimawechsellagerung (H ₂ O)
В	ild 56			Bild 57			Bild 58
			200 µm				
Das Bild dokumentier Diese ist erst einmal n dem von der Menge he	t Ettring icht sch r bemer	jitbildung in F ädigend, aber kenswert.	Poren. trotz-	Gezeigt sind Ettringitablagerung Pore. Der Füllgrad ist geringer NaCl-Lagerung, jedoch durchaus	en in nahezu jeder im Vergleich zur s vergleichbar.	Eine G Zemer Poren	efügeschädigung der tsteinmatrixdurch Ettringitbildung in den (SEB) wird in diesem Bild belegt.
Legende:> Et	tringit	> Al	KR-Ge	el Rissverlauf			

Seite 27 von 49 Seiten

Tabelle 12a: Befund der petrographischen Untersuchungen der Probe 3-08-KWL-H₂O (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahi	ren: Klimawechsellagerung (H ₂ O)
В	ild 59		Bild 60		Bild 61
Zu sehen sind mit Ettrin sind insgesamt zahlreic	git gefül he so g	lte Poren. Im Ge	efüge Dieses Bild belegt eine Gefüge fen. Ettringitbildung in den Poren un hende Rissbildung.	eschädigung durch d von dort ausge- i	Eine durch stärkere Interferenzfarben nervorgehobene Ettringitbildung im Gefüge , sowohl n den Poren, als auch im Zementstein, wird in diesem Bild dokumentiert. Dadurch hevorgerufen ist es zur Rissbildung und somit zur Schädigung des Zementsteingefüges gekommen. Das Schadensbild ist eindeutig einer SEB zuzuordnen.
Legende:> Ett	tringit		KR-Gel Rissverlauf		

Seite 28 von 49 Seiten

Tabelle 12b: Befund der	petrographischen Untersuchungen	der Probe 3-08-KWL-H ₂ O (K	(ies) mittels Polarisationsmikroskopie
	petrographicenen entereachangen		

Gesteinskörnung:	GK3	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (H ₂ O)
В	ild 62				
Die durchaus erheblich Poren ist diesem Bild zu hier zwei Poren massiv das normale Maß hinausgeht.	e Meng u entneh mit Ettri einer	e an Ettringit i nmen. Zu seher ngit gefüllt, was Zementhydra	n den n sind s über tation		
Legende:> Ett	tringit		KR-Gel Rissverlauf		

Tabelle 13a: Befund der petrographischen Untersuchungen der Probe 1-08-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Tabelle 13b: Befund der petrographischen Untersuchungen der Probe 1-08-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	Alkali-Ri	ichtline des DAfStb	AKR-Prüfverfa	hren:	Klimawechsellagerung (NaCl)
В	ild 66			Bild 67	•		Bild 68
Beteiligt sind weiterhin massiver Gelbildung im der amgrenzenden Por	n Flintk Bereich en.	örner mit Riss ı der Oberfläche	und Zu se a und Mikroq Gelbilo	hen sind stressquarzha juarzkornbereichen, ebe dung am Kornrand und ir	altige Körner neben enfalls mit massiver n den dortigen Poren.	Im Bild Gefüge sind.	dokumentiert sind zahlreiche Poren im e, die massiv mit Gelablagerungen gefüllt
Legende:> Et	tringit	AK	R-Gel	Rissverlauf			

Tabelle 13c: Befund der petrographischen Untersuchungen der Probe 1-08-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart: A	Ikali-Richtline des DAfStb	AKR-Prüfverfah	nren: Klimawechsellagerung (NaCl)
В	ild 69		Bild 70		Bild 71
Das Bild zeigt exempla nismus der AKR in eine tallinen Bereichen mit quarz) und Rissfortsetz mit Gelablagerungen.	risch de em Quai Riss im ung in	en typischen Mecha- rzkorn mit mikrokris- n Quarzkorn (Mikro- die Matrix und Pore	Dieses Bild weist darauf hin, da feine Gesteinskörnung zumindes beteiligt ist. Es ist eine massive (Porenrand des Sandkornes oben zu sehen.	ass auch hier die at an der Reaktion Gelablagerung am im Bild aus Quarz	Zu sehen ist im Bild eine Gelablagerung im Porenrand, wobei auch hier ein Verursache nicht in unmittelbarer Nähe liegt. In den Poren daneben fand eine Ettringitbildung statt, sodass beide Reaktionen im Betongefüge nachweisbar sind.
Legende:> Ett	ringit	AKR-G	el> Rissverlauf		

Tabelle 13d: Befund der petrographischen Untersuchungen der Probe 1-08-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK1	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)
В	ild 72				
Fast alle Poren im Gef mit Ettringit gefüllt, w Treiberscheinungen b Zementsteingefüges hin	üge sinc vobei di bis zur nweist.	d nahezu vollst e Pore recht Zerstörung	rändig s auf des		
Legende:> Ett	tringit	Al	KR-Gel Rissverlauf		

Seite 33 von 49 Seiten

Tabelle 14a: Befund der petrographischen Untersuchungen der Probe 2-08-KWL-NaCI mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfah	ren: Klimawechsellagerung (NaCl)
В	ild 73		Bild 74		Bild 75
Dargestellt ist das typis Es handelt sich häufig gestörung, die sich in e Gel in Poren dokument mit Rissen durchsetzt kann festgehalten we Grauwackkorn geschäd	iner Anr iner Anr iert, so c sind. Au erden, c digt ist.	fügebild des Beton e großflächige Ge reicherung von Ak lass solche Bereic us der Beobachtu dass nahezu jec	ns. Es sind zwei Grauwackekörner fü- den geht ein Riss in die Matrix, w der AKR-Gelbildung dient. he Ing les	zu sehen. Von bei- elcher als Ausgang	Es ist deutlich AKR-Gel in einer Pore zu sehen. Verursacher ist das Grauwackekorn am unteren Bildrand. Auch hier sind die gebildeten Gelmengen beträchtlich. Kennzeichen des Betons ist auch eine Kombination aus AKR und SEB.
Legende:> Et	tringit	AKR	-Gel		

Seite 34 von 49 Seiten

Tabelle 14b: Befund der petrographischen Untersuchungen der Probe 2-08-KWL-NaCI mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfah	nren: Klimav	vechsellagerung (NaCl)
В	ild 76		Bild 77			Bild 78
Im Bild ist ein Riss in Rissfortsetzung in die Nachweis von AKR-Ge Schädigung schließen. um das Korn und den nachgewiesen . Die Po gefüllt, sodass auch ein gefunden hat.	einem Matrix I in dies In den a Riss wir ren sind ne SEB a	Grauwackekorn m z zu erkennen. De em Bereich lässt a angrenzenden Pore rd zusätzlich Ettring stellenweise mass an dieser Stelle stat	it In diesem Bild gelingt der Nachw er einer mit Ettringit massiv gefüllte af alstrahlige Risse in die Matrix. n Grauwackekorns können ebenf it genden Mechanismen beobachte v t-	eis einer SEB. Von n Pore gehen radi- In der Nähe eine alls beide schädi- et werden.	Es sind typische Grauwackekorn zu e	Merkmale einer AKR ar erkennen.
Legende:> Et	tringit	AKR-	Gel> Rissverlauf			

Seite 35 von 49 Seiten

Tabelle 14c: Befund der petrographischen Untersuchungen der Probe 2-08-KWL-NaCI mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahrei	n: Klimawechsellagerung (NaCl)			
В	ild 79		Bild 80		Bild 81			
Am Grauwackekorn tre	ten typi	sche Erscheinu	Ings- Das Bild dokumentiert die mass	ive Gefügeschädi-	ele Poren sind mit Ettringit gefüllt und von diesen			
formen einer SEB auf. nismen treten sehr häut	Beide S fig geme	Schädigungsme einsam.	 gung durch SEB (massiv mit Ettri netzartig deutlich sichtbares Risstein). Man findet im Gefüge v AKR-Bildung (Körner, Risse, Polim Betongefüge mehr Bereiche durch SEB vor. 	ngit gefüllte Poren, ssbild im Zement- viele Bereiche der ren), jedoch liegen e mit Schädigung	oren gehen netzartige Risse in die Matrix aus, was mit zu einer massiven Gefügeschädigung führt.			
<u></u>	Legende:> Ell'Ingil> AKR-Gel> Rissvenaul							

Seite 36 von 49 Seiten

 Tabelle 14d:
 Befund der petrographischen Untersuchungen der Probe 2-08-KWL-NaCI mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)
В	ild 82				
			500 µm		
Dass am Schadensbild nung beteiligt ist, kan werden. Zu sehen ist e Rissen im und ausgehe lagerungen im Riss und zu sehen.	auch di n diese in Sanc n des K d in der	ie fiene Gesteir em Bild entnor Ikorn (ca. 1mm forns. Es sind G angrenzenden	nskör- nmen i), mit Gelab- Pore		
Legende:> Ett	tringit	→ Ał	KR-Gel Rissverlauf		

Seite 37 von 49 Seiten

Tabelle 15a: Befund der petrographischen Untersuchungen der Probe 3-08-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	Alkali-Richtline des DAfS	tb AK	R-Prüfverfah	ren:	Klimawechsell	agerung ((NaCI)
В	ild 83		Bild	84			Bild 85	•	
Zu sehen ist eine Übe 32-facher Vergrößerung eingebettet in eine Zementstein. Im Bild (o sehen, die mit gelartigen ist.	rsicht zu g. Grobe Matrix oben lin n Reakti	um Betongefüge Rhyolithkörner : aus Sand ks) ist eine Pore onsprodukten ge	bei Bei 125-facher Vergrößeru sind sive AKR-Gelbildung im Be eines Rhyolithkorns (im E e zu Korn ist zu erkennen, offen efüllt Gelbildung und Ablagerur Nähe.	ing findet m itongefüge, l Bild oben). sichtlich Ver ng in den f	an eine mas- hier am Rand Der Riss im rursacher der Poren in der	AKR-Gelal Ettringitbild Sandkorns	blagerungen Jungen in Poren ; (Quarz) zeigt diese	und in der N es Bild.	massive ähe eines
Legende:> Ettringit> AKR-Gel> Rissverlauf									

Tabelle 15b: Befund der petrographischen Untersuchungen der Probe 3-08-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)
В	ild 86		Bild 87		
Das Bild dokumentiert massive Ettringitbildun eines Sankorns (Quarz	t AKR-(igen in .).	Gelablagerunge Poren in der N	n un Dass es in den Poren im Zemer Nähe massive Gelablagerungen gibt, nicht immer klar auszumachen Bild zu sehen.	ntsteingefüge doch deren Verursache sind, ist in diesem	
Legende:> Ettringit> AKR-Gel> Rissverlauf					

Tabelle 16a: Befund der petrographischen Untersuchungen der Probe 4-08-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Tabelle 16b: Befund der petrographischen Untersuchungen der Probe 4-08-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK4	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)		
В	ild 91		Bild 92		Bild 93		
	いたとうないの						
Auch hier gibt es Anzeic ist ein Riss in eir Rissfortsetzung in die M menge an AKR-Gel zu f	:hen für nem G Matrix. I finden.	eine AKR. Zu se Grauwackekorn Dort ist eine geri	hen In diesem Gefüge zeigt jede Po mit lung. inge	ore eine Ettringitfül- gefüllt	s Bild zeigt ebenfalls vollständig mit Ettringit te Poren.		
Legende:> Ettringit> AKR-Gel> Rissverlauf							

 Tabelle 16c:
 Befund der petrographischen Untersuchungen der Probe 4-08-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK4	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)
В	ild 94		Bild 95		
Durch dieses bild gelir einer SEB im Betonget des Sandkorns sind beid und von beiden geher Matrix aus. Das grobe nicht beteiligt.	ngt ebe füge. Zu de mass n Risse Korn ist	nfalls der Nach wei Poren am F siv mit Ettringit ge in die umgebe t an der Schädig	weis Rand Zementsteingefüge des Betons efüllt ende gung	Ettringitbildung im zu sehen.	
Legende:> Ett	ringit	AK	R-Gel		

Tabelle 17a: Befund der petrographischen Untersuchungen der Probe 2-22-KWL-NaCI mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfah	nren:	Klimawechse	llagerung (N	laCl)
В	ild 96		Bild 97		Bild 98			
Das Bild dokumentiert e AKR mit Grauwacke im Risse im Korn, Rissforts dort in den Poren Ablag	indeuti Betonge setzung jerunge	g das Ablaufen eine efüge. Zu sehen sin len in der Matrix un n von Gel.	 Fr Ebenfalls hier zeigt sich das Abla d Grauwacke. Zu sehen sind ein d Rissfortsetzungen in der Matrix gerungen in den Poren. 	ufen einer AKR mit Riss im Korn mit und dort Gelabla-	Zu seł Gefüges Grauwac die sich Matrix fo wird Ettr	nen ist ein Be schädigungen au ckekorns. Im Korn s bis an die Oberflä ortsetzen. In den Ris ingit nachgewiesen.	reich mit n m Rand ind Risse zu e iche und hine ssen und in d	massiven eines ∍rkennen, ∍in in die en Poren

Legende: ----> Ettringit

AKR-Gel

Rissverlauf

Seite 43 von 49 Seiten

 Tabelle 17b:
 Befund der petrographischen Untersuchungen der Probe 2-22-KWL-NaCI mittels Polarisationsmikroskopie

Gesteinskörnung:	GK2	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)	
В	ild 99		Bild 100			
Im Bild sind zahlreiche weise massiv mit Ettring len ist sogar eine Ge SEB zu beobachten.	Poren git gefül efügeauf	im Gefüge sind lt. An manchen lockerungen ir	d teil- Stel- offenbart dieses Bild. Es sind za massiver ettringitfüllung zu sehe zial ist gut zu erkennen und eber dung zu sehen.	n infolge einer SEB hlreiche Poren mit n, das Treibpoten- hfalls ist die Rissbil-		
Legende:> Ettringit> AKR-Gel> Rissverlauf						

Tabelle 18a: Befund der petrographischen Untersuchungen der Probe 2-22-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfah	ren: Klimawechsellagerung (NaCl)	
Bi	ld 101		Bild 102		Bild 103	
Das Bild dokumentiert AKR mit Rhyolith. Zu e links, Rissfortsetzung in und in den Poren AKR-	eindeut rkenner i die Mat Gelabla	tig den Ablauf e n sind: Riss im H trix und im Rissk igerungen.	iner Zu sehen ist die erfolgte mass Korn gung durch AKR-Gelbildung in anal stein am Rand des groben Rhyd	sive Gefügeschädi- Poren im Zement- olithkornes.	Auch dieses Bild bestätigt anhand der in mehreren Poren am Rand eines Rhyolithkornes erfolgten AKR-Gelablagerungen das hohe Schädigungspotenzial des Rhyolit mit 22mm Größtkorn.	

Legende: ----→ Ettringit

Rissverlauf

AKR-Gel

Tabelle 18b: Befund der petrographischen Untersuchungen der Probe 2-22-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK3	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)
Bi	ld 104				
			500 µm		
Auch in diesem Bild massiver Ettringitbildur einigen Poren gehen au Matrix aus, so Schadensmechanismus	findet ng in de ich Riss dass s beteilig	man Bereiche en Poren. Und e radialstrahlig eine SEB gt ist.	e mit I von in die am		
Legende:> Ett	tringit	Ał	KR-Gel Rissverlauf		

Tabelle 19a: Befund der petrographischen Untersuchungen der Probe 4-22-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Tabelle 19b: Befund der petrographischen Untersuchungen der Probe 4-22-KWL-NaCI (Kies) mittels Polarisationsmikroskopie

Tabelle 19c: Befund der petrographischen Untersuchungen der Probe 4-22-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung: GK4 Betor	nart: All	kali-Richtline des DAfStb	AKR-Prüfverfahı	ren: Klimawechsellagerung (NaCl)
Bild 111		Bild 112		Bild 113
Kennzeichen des Betongefüges sin massive Gelablagerungen im Zement wie in diesem Bild entlang des Risses Es sind in der Nähe weit und breit keine zu finden, sondern mehrere Sandkörne	nd durchaus itsteingefüge, zu sehen ist. e Grobkörner er.	Das Bild stellt eine massive Gelbi dar.	Idung in den Poren	Im Betongefüge sind zahlreiche Poren zu finden, die mit Ettringit gefüllt sind. An dieser Stelle gibt es erst mal keinen Hinweis auf eine akute Gefügeschädigung, aber trotzdem aus der Menge an Ettringit doch bemerkenswert.
Legende:> Ettringit	→ AKR-Ge	Rissverlauf		

Tabelle 19d: Befund der petrographischen Untersuchungen der Probe 4-22-KWL-NaCl (Kies) mittels Polarisationsmikroskopie

Gesteinskörnung:	GK4	Betonart:	Alkali-Richtline des DAfStb	AKR-Prüfverfahren:	Klimawechsellagerung (NaCl)	
Bi	ld 114	·	Bild 115			
Auch dieses Bild zeigt e groben Gesteinskorns z gefüllt.	entland (ahlreich	der Oberfläche e ne Poren mit Etti	eines Durch dieses Bild gelingt der Na geschädigung durch SEB. In der schein sind doch zahlreiche dav füllt, hier im Bild gehen Risse v aus. Das Resultat ist eine Gefüg Treibwirkung infolge SEB.	achweis eine Gefü- n Poren im Zement- ron mit Ettringit ge- von solchen Poren eschädigung durch		
Legende:> Ettringit> AKR-Gel> Rissverlauf						

Analyse des Alkali- und Chlorideintrag mittels LIBS

Inhalt

 1 Einzelergebnisse der Gesteinskörnung 1 (Kies) 2 Einzelergebnisse der Gesteinskörnung 2 (Festgestein: Grauwacke) 	2	
3 Einzelergebnisse der Gesteinskörnung 3 (Festgestein: Rhyolith)		

1 Einzelergebnisse der Gesteinskörnung 1 (Kies)

Tabelle 1-1a: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK1-(0-8)-60°C-3%

Seite 3 von 42 Seiten

Tabelle 1-1b: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK1-(0-8)-60°C-10%

Seite 4 von 42 Seiten

Seite 5 von 42 Seiten

Seite 6 von 42 Seiten

Seite 7 von 42 Seiten

Seite 8 von 42 Seiten

Seite 9 von 42 Seiten

Tabelle 1-2c: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK1-(0-22)-KWL-H₂O

Seite 10 von 42 Seiten

Tabelle 1-2c*: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK1-(0-22)-KWL-H2O

Seite 11 von 42 Seiten

Seite 12 von 42 Seiten

Seite 13 von 42 Seiten

Seite 14 von 42 Seiten

Seite 15 von 42 Seiten

Seite 16 von 42 Seiten

2 Einzelergebnisse der Gesteinskörnung 2 (Festgestein: Grauwacke)

Tabelle 2-1a: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK2-(0-8)-60°C-3%

Seite 17 von 42 Seiten

Tabelle 2-1b: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK2-(0-8)-60°C-10%

Seite 18 von 42 Seiten

Seite 19 von 42 Seiten

Seite 20 von 42 Seiten

Seite 21 von 42 Seiten

Seite 22 von 42 Seiten

Seite 23 von 42 Seiten

Seite 24 von 42 Seiten

Seite 25 von 42 Seiten

Seite 26 von 42 Seiten

Seite 27 von 42 Seiten

Seite 29 von 42 Seiten

Seite 30 von 42 Seiten

3 Einzelergebnisse der Gesteinskörnung 3 (Festgestein: Rhyolith)

Tabelle 3-1a: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK3-(0-8)-60°C-3%

Seite 31 von 42 Seiten

Seite 32 von 42 Seiten

Seite 33 von 42 Seiten

Tabelle 3-1d: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK3-(0-8)-KWL-NaCI

Seite 34 von 42 Seiten

Tabelle 3-2a: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK3-(0-22)-60°C-3%

Seite 35 von 42 Seiten

Tabelle 3-2b: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK3-(0-22)-60°C-10%

Seite 36 von 42 Seiten

Tabelle 3-2c: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK3-(0-22)-KWL-H₂O

Gesteinskörnung:	GK3	Betonart:	OB D>8	und UB nach ARS 04/2013	AKR-Prüfverfahrer	n: Klimawechsellagerung (H ₂ O)	
Ergebnis der Dehnungsmessungen							
Einfüllseite							
Probe: GK3-(0-22)-KWL-H2O Prisma 400 x 100 [mm]Einfüllseite $U = 1 + 2 - 3 = 4 + 105 + 126 + 14$ LagerungsdauImage: Comparison of the target of targe							
Messfläche 100 x 100 [mm]							
Ergebnis der LIBS-Analyse							
Natriumverteilung				Chlorverteilung		Schwefelverteilung	
	trium [M	%]/Zementstein	2,00		tein 11 22 33 54 54 54 54 54 54 54 54 54 54	Schwefel (Signaluntergrundverhältnis)	
— nach Prüfung — vor Prüfung	<mark></mark> na L(ach Prüfung (Ausschn DQ	iitt)	0,00 0,40 0,80 1 	1,20 1,60 2,00 nacl	n Prüfung (Ausschnitt) 1,000 1,100 1,200 n Prüfung (gesamter Querschnitt)	

Seite 37 von 42 Seiten

Tabelle 3-2c*: Ergebnisse der Dehnungsmessungen und der LIBS-Analyse bei Probe GK3-(0-22)-KWL-H2O

Seite 38 von 42 Seiten

Seite 39 von 42 Seiten

Seite 40 von 42 Seiten

Seite 42 von 42 Seiten

