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Abstract - Many safety-relevant tasks in control or diagnostics require binary choices such as ‘conflict vs. separation’ in air-

traffic control, ‘normal vs. pathological’ when interpreting x-ray pictures, or ‘permitted vs. forbidden’ when inspecting 

airport security scans. Deciders often are uncertain, but nevertheless required to decide between two alternatives, that is, they 

have not only to decide upon an action, but also about the admissible level of uncertainty. If the accepted level of judgment 

certainty is not taken into account, the sequence of decisions does not capture the full picture of the underlying decision 

process. Differences in judgment certainty are relevant, because they reflect not only the adequacy of the human-machine-

interface that is evaluated, but also the differences in expertise of the decider and the requirements of the actual situation or 

task. Therefore, capturing both judgment certainty and discrimination performance is essential. A comparison of different 

human-machine-interfaces (for air traffic control) is used to illustrate a methodological approach, which allows for integrated 

analyses of decision processes based on receiver-operator-characteristics and practical guidelines for the evaluation of 

human-machine-interfaces for safety-relevant operation procedures are provided. 

 

INTRODUCTION AND THEORY 

 
Many tasks in control or diagnostics require the deciders to make binary choices such as ‘conflict vs. 

separation’ in air traffic control, ‘normal vs. pathological’ when interpreting x-ray pictures, or 

‘permitted vs. forbidden’ when inspecting airport security scans. Although deciders often are 

uncertain, a choice between the two alternatives that formally can be defined as ‘positive’ and 

‘negative’ nevertheless is required, therefore causing a dilemma: For achieving a high performance in 

discriminating between positive and negative cases, the decider has to maximize the fraction of true 

positives (hit rate) out of the total actual positives, and minimize the fraction of false positives (false 

alarm rate) out of the total actual negatives at the same time. Unfortunately, in all cases in which the 

decider is not absolutely certain about the correctness of his decision, raising the true positive rate 

requires to classify more and more cases as positive even though uncertain if they are indeed positives. 

Hence, increasing the true positive rate is inevitably accompanied by an increased likelihood for a 

false alarm and vice versa. The decider has to choose between striving for the maximization of the 

former and therefore tolerating more false alarms, and striving for minimization the latter and 

therefore diminishing the number of true positives, or aiming to reach a balance between the resulting 

true positive and false alarm rate. The discrimination performance, however, stays unaffected from 

this choice, which shall be illustrated with the following example. If the decider is absolutely uncertain 

but wants to ensure that no positive case is missed, he classifies all cases as positives. Consequently, 

all negatives will be also classified as positives, resulting in a discrimination performance at chance 

level. The same performance results when, for instance, both half of the positives as well as half of the 

negatives are classified correctly. Though the discrimination performance in both examples is the 

same, the underlying decision process is a different one, because in the latter the decider accepts a 

higher degree of uncertainty. The result of the choice about how much uncertainty should be accepted 

is termed ‘criterion’ and categorized into ‘liberal’, ‘conservative’ and ‘neutral’ response behaviour. 

The liberal criterion reflects the tendency to classify uncertain cases preferably as positives rather than 

negatives [1].  

 

WHY MEASURING UNCERTAINTY IS IMPORTANT 
 

For the evaluation of human-machine-interfaces used to make binary choices, analyzing both the 

performance and the judgment certainty is of mayor importance, because the outcome of the decision-

process in terms of true positive and false positive rates is not only a result of how well the human-

machine-interface supports the decider in discriminating between positive and negative cases, but also 

is a result of the level of uncertainty the decider is willing or allowed to accept. There are several 

important factors in the context of evaluating human-machine-interfaces that, besides the design 

characteristics of the human-machine-interface, impact on the decision of the decider: His expertise 



with the interface (i) and the task (ii), as well as the characteristics of the task (iii) and the situation 

(iv). Interactions between these factors can additionally impede the interpretation of the results. The 

following examples shall point out how they can lead to counterintuitive effects. 

 

i) While a decider is able to discriminate between the majority of the positive and negative cases 

presented with the interface he or she is highly used to, a novel interface might cause a higher 

degree of uncertainty, encouraging him or her to apply a more liberal response criterion. 

Therefore, both a higher true positive and false positive rate result with the novel interface. 

The discrimination performance with the novel interfaces, however, could well be equal, 

better, or worse as with the traditional interface. 

 

ii) The same is true when the decider possesses profound expertise with the tasks. He or she 

might be equally certain about the presented cases, but achieve an equal, better, or worse 

discrimination with the novel interface. 

 

iii) Another possibility is, that certain tasks such as vertical distance judgments cause a higher 

uncertainty when, for instance, presented with a 2D compared to a 3D visualization, whereas 

for horizontal distance judgments the contrary might be true. Such an interaction between 

human-machine-interface and task-characteristics might conceal existing differences, by 

resulting in both an overall comparable discrimination performance and judgment certainty, 

though clear advantages exist for each kind of visualization dependent on the task to be 

achieved. 

 

iv) In general, the risks and incentives certain situations comprehend play an important role when 

deciding how much uncertainty is acceptable. While an air traffic controller often has only one 

opportunity to decide, and a wrong decision is likely to cause fatal consequences, he or she 

will apply a liberal response criterion. Medical doctors or airport security officers, in contrast, 

might show a stronger trend towards conservative response behaviour because they face 

different demands. If uncertain, they might decide to conduct another test in order to re-

evaluate the diagnosis before informing a patient about a radical result or allowing a passenger 

to enter an airplane. 

 

These examples highlight that an objective evaluation requires separating discrimination performance 

from response behaviour to enable a correct interpretation of the results. 

 

METHODS FOR EVALUATING PERFORMANCE AND UNCERTAINTY 
 

Selecting test cases and rating procedures 
 
As a basis for the measurement, a representative set of cases that includes as many typical task 

characteristics as possible has to be presented, and is so much the better the more cases are used [1]. 

To facilitate the interpretation of the results, it is helpful to present the decider with an equal number 

of positive and negative cases in a randomized order. Right after the presentation of each case, the 

decider is asked to classify it as positive or. To do so, a rating scale with an at least ordinal scale of 

measurement should be used. We recommend using a six-point-rating scale that allows for capturing 

an interval level of measurement, a so-called Likert-scale. The even number of response options forces 

the decider to indicate a tendency towards one of the two endpoints. The interval scale allows 

conducting a broad variety of statistical calculations on the resulting data. More than six options tend 

to overload the decider, whereas less might limit the decider in expressing the perceived level of 

certainty and the comprehensiveness of the resulting information.  

 



Calculating hit and false alarm rates and visualizing performance: The ROC curve 

  
After the rating procedures have been completed, first both hit and false alarm rates for each response 

option and human-machine-interface that shall be evaluated are calculated. Afterwards, and beginning 

with the resulting hit and false alarm values for the option ‘certainly positive’, the hit and false alarm 

rates of the next response option ‘probably positive’ and so forth are added, producing pairs of hit and 

false alarm values that increase with adding each option until a value of 100% results. Based on this, a 

so-called receiver operating characteristic (ROC) curve can be created to demonstrate the performance 

resulting with each human-machine-interface. To do so, the values are plotted into a coordinate system 

in which the ordinate represents the hit rate and the abscissa the false alarm rate, and connecting the 

data points including the zero scale marks.  

 

Isolating performance from uncertainty: The area under the ROC curve 
 

The area under the ROC curve (AUC) indicates the likelihood with which the decider detects a true 

positive case correctly as such when presenting a randomly chosen case out of all cases on which the 

ROC curve is based. The AUC value can vary between the two values 0 and 1 of which the latter 

indicates a perfect discrimination performance. A result of 0.5 signifies a performance at chance level. 

The AUC value therefore serves as a measure for expressing the discrimination performance indepen-

dently from the underlying judgment certainty, since it solely depends on the size of the area under the 

curve and not on its shape. That is, the criterion can vary on the graph, therewith representing different 

response criteria that could be applied when uncertain about if the displayed case is positive or 

negative. The discrimination performance, however, stays the same no matter which response criterion 

the decider applies for each response option [1]. This facilitates an objective comparison of different 

human-machine-interfaces superior to comparing hit or false alarm values directly because the latter 

depends on the response criteria the deciders apply.  

 

Comparing performance while controlling judgment certainty: The zROC graph 

 
By transferring the hit and false alarm values into standardized z-values, connecting them with a 

straight line by calculating a linear equation, and plotting them into a coordination system with equally 

standardized axis, for any desired hit rate the resulting false alarm rate can be predicted and vice versa. 

These so called zROC graphs facilitate the evaluation of different human-machine-interfaces in a way 

that goes beyond comparing the discrimination performance on the basis of the AUC values. The 

evaluator now can choose from any criterion a decider might want to apply in order to deal with 

uncertainty, and compare the resulting performance between the different human-machine-interfaces. 

The fact that the deciders may have applied different criteria with each interface is irrelevant. Please 

note that determining zROC graphs is so much the better, the more response options have been given. 

A binary response option, however, does not allow the calculation of a zROC graph, because it only 

allows calculating one point of the graph and the required information for determining the slope of the 

zROC graph is missing unless, for instance, assumptions can be derived from similar experiments. 

 

HOW TO GATHER, ANALYZE AND INTERPRETE YOUR DATA 
 

Comparing expert performance with a traditional and a novel interface: An example 

from air traffic control 
 

To illustrate how the results from comparing different human-machine-interfaces for making binary 

choices can be analysed and interpreted with the above described methodology, we use a data set from 

a recent study in which we compared different visualizations for air traffic controller workstations [2]. 

Amongst others, we used a representative set of 32 safety critical air traffic scenarios that were 

presented to 12 air traffic controllers whose task it was to classify each scenario as conflict (positive) 

or separation (negative) using a 2D visualization similar to the one used today at air traffic controller 

workstations as well as a stereoscopic 3D visualization. Each scenario started 45 seconds before the 



respective aircraft actually collided or reached the closest point of approximation in case they missed 

each other, and was shown for exactly 10 seconds before it was blinded out. After each scenario, an 

entry mask with a six-point-rating scale and the response options ‘certainly positive’, ‘probably 

positive’, ‘maybe positive’, ‘maybe negative’, ‘probably negative’, and ‘certainly negative’ was 

presented. This allowed the air traffic controllers to express their certainty about the outcome of each 

scenario. Table 1 shows the percentages of true positive and true negative scenarios that were 

classified with each response option and visualization. 

 

Table 1. Percentage of positive and negative cases classified with each response option. 

 
Scenario type 

certainly 

yes 

probably 

yes 

maybe 

yes 

maybe 

no 

probably 

no 

certainly 

no 

2D 
Positive 25,1 39,9 7,4 6,9 11,3 9,4 

Negative 2,8 9,7 4,5 5,2 24,4 53,4 

3D 
Positive 22,0 37,0 9,5 8,0 19,5 4,0 

Negative 5,6 10,0 4,5 7,3 20,6 52,0 

 

The percentages of true positive and true negative scenarios provide the basis for calculating the hit 

and false alarm pairs used for creating the ROC curves. Table 2 shows the results of cumulating the 

percentages beginning with the response option ‘certainly yes’ that are added to the values of the other 

response options beginning with ‘probably yes’ and so forth. 

 

Table 2. Cumulated hit and false alarm rates over the response options beginning with ‘certainly yes’. 

 
Scenario type 

certainly 

yes 

probably 

yes 

maybe 

yes 

maybe 

no 

probably 

no 

certainly 

no 

2D 
Hit rate 25,1 65,0 72,4 79,3 90,6 100 

False alarm rate 2,8 12,5 17,0 22,2 46,6 100 

3D 
Hit rate 22,0 59,0 68,5 76,5 96,0 100 

False alarm rate 5,6 15,6 20,1 27,4 48,0 100 

 

For illustrating the performances, the cumulated hit and false alarm rates for both the 2D and the 3D 

visualization are plotted into a coordinate system with the ordinate showing the hit rate and the 

abscissa the false alarm rate. Connecting all points including the zero scale marks result in the ROC 

curves shown in Figure 1a. For transforming the ROC curves into zROC graphs, first the hit and false 

alarm rates of Table 2 are transformed into standardized z-values by dividing them by 100 and 

consulting the respective z-values. Table 3 shows the results of this transformation. Please note that 

for the response option, for which the cumulated hit and false alarm rates amount to 100% per cent, no 

z-values can be reported, because z-values of the standard normal distributions range from - ∞ to + ∞. 
 

Table 3. z-values of the cumulated hit and false alarm rates from Table 2. 

 
Scenario type 

certainly 

yes 

probably 

yes 

maybe 

yes 

maybe 

no 

probably 

no 

certainly 

no 

2D 
Hit rate -0,67 0,39 0,59 0,82 1,32 --- 

False alarm rate -1,91 -1,15 -0,95 -0,77 -0,09 --- 

3D 
Hit rate -0,77 0,23 0,48 0,72 1,75 --- 

False alarm rate -1,59 -1,01 -0,84 -0,60 -0,05 --- 

 

For these values linear regressions are calculated. In the case of the 2D visualization, a slope of 1.1 

and an intercept with the axis of ordinates of 1.56 within the z-score-based coordinate results. For the 

3D visualization these values amount to 1.61 and 1.8 respectively. Both the calculation of the z-values 

as well as of the linear equations can be completed using commercial spreadsheet programs. 

Afterwards, the standard normal values of the hit and false alarm rates as well as the results of the 

linear equations are plotted into a coordinate system similar to the one used for displaying the ROC 

curves but with z-standardized axis. The zROC graphs are shown in Figure 1b, using a z-value-range 

from -2.5 (1%) to 2.5 (99%). 



 
 

Figure 1. ROC curves (a) and zROC graphs (b) based on the hit and false alarm rates of the air traffic 

controllers with the 2D and the 3D visualization. 

 

Which human-machine-interface leads to the best overall discrimination performance? 
 

In order to evaluate the resulting discrimination performance with 2D and 3D, the areas under the both 

ROC curves shown in Figure 1a are compared. For the calculation of the AUC values, we refer to 

Green & Swets [1], because manually determining them is somewhat complex, and the description of 

the mathematical foundations required doing so would go beyond the scope of this article. We rather 

recommend using one of the various commercial statistics programs that offer the possibility to 

calculate AUC values, e.g. SPSS. Our results indicate that the use of the 2D visualization results in 

AUC value of 0.834 while the 3D visualizations leads to a result of 0.815. Hence, the likelihood for 

correctly classifying a randomly chosen case out of the 32 scenarios as conflict or separation is 83.4% 

when presented with 2D, and 81.5% in case 3D is used. Because the AUC values only refer to the size 

of the area under the ROC curves and neglect their shapes, this advantage of 2D over 3D is 

independent from the underlying judgment certainty, and reflects the average performance that is to be 

expected, no matter which criterion the air traffic controller decides to apply. This constitutes a major 

advantage over other methods for comparing the performance between human-machine-interfaces 

used for making binary choices, because the factors that impact on the deciders’ judgment certainty 

and his or her decision about which criterion to apply in order to deal with uncertainties can be 

disregarded. 

 

How does the response behaviour impact on performance? 
 

In some cases the response criterion cannot be disregarded, but rather is of major importance. In air 

traffic control, for instance, the response behaviour is central, because safety is to be prioritized higher 

than efficiency, and the consequences of overlooking a conflict are worse than causing a false alarm. 

In this case, performance shall be measured by the amount of false alarms that result when the decider 

tends to favour the classification of uncertain cases as positives rather than negatives. Hence, the 

criterion by which the performance of the decider with different interfaces is compared matters. 

Transforming the ROC curves into zROCs allows the evaluator to choose the criterion by which the 

human-machine-interfaces shall be compared. In our example, either hit rates reported in studies from 

other researchers or the hit rates that resulted with the visualizations we evaluated constitute suitable 

reference values. The former allows for an invaluable comparison with other systems, while the latter 

offers a comparison between the traditional 2D top-view visualization currently used at air traffic 

controller workstations and the novel 3D visualization. Using the linear equation that describes the 

performance of the air traffic controllers with the 2D visualization, a false alarm rate of 57% is pre-

dicted for a criterion that leads them to classify 96.0% of the actual conflicts as such. This predicted 

value now could be compared with the false alarm rate of 48.0% that resulted with the 3D 



visualization for the hit rate of 96.0%. The result indicates that by using the 3D visualization, a 9% 

lower false alarm rate can be expected compared with using the traditional 2D top-view when an equal 

conflict detection performance as with 3D shall be guaranteed. Please note that, because the linear 

equations are based on the z-transformed, values z-values have to be used for the calculations and that 

the result has to be converted into percentile ranks for its interpretation. 

 

Interestingly, the result of comparing the false alarm rates between 2D and 3D shows the very revers 

result of the AUC comparison. While in the former comparison 3D turns out to be the advantageous 

visualization, the latter demonstrates 2D to be superior. The reason for this, as can be seen in Figure 

1b, is the different slopes of the zROC. Therefore, the result depends on the response criterion of the 

decider and, in our example, the more liberal the criterion, the higher the advantages of 3D and vice 

versa. Hence, in other applications than air traffic control where it might be preferable to minimize the 

false alarm rate rather than maximizing the hit rate, e.g. because the costs of a false alarm outbalance 

those of missing a positive case, the application of conservative response behaviour is conveyed, and 

the same results would indicate 2D to be the preferred visualization. The reason for different zROC 

slopes lays in the variation of the deciders’ responses when rating positive and negative cases. Figure 

2 shows two examples of probability distributions that could result from rating scenarios on a six point 

Likert-scale. The graph to the right indicates the probability distribution that results from rating the 

positive scenarios, the left from rating the negative scenarios. In Figure 2a, an example is given in 

which the variation from the average value of the judgments is equal for both positive and negative 

cases. This leads to a unit slope of the zROC, because the growth of the probability for identifying a 

positive case as such when allowing more and more uncertainty (moving the criterion from the right 

hand side of the graph to the left hand side) increases in the same manner as the probability for a false 

alarm. The example depicted in Figure 2b shows two distributions with the same average values as the 

example in Figure 2a. Therefore, the discrimination performances of both examples are equal. In the 

example shown in Figure 2b, however, the standard deviation of the responses to the negative cases is 

larger than the deviation of the responses to the positive cases. Consequently, when applying a more 

conservative criterion, the probability for a false alarm initially is higher compared with the example 

of Figure 2a, but increases less when moving towards more liberal responses. When plotting both 

examples into a z-coordinate system, the example in Figure 2b therefore will result in a steeper zROC 

slope as the example shown in Figure 2a.  

 

 
 

Figure 2. Exemplary distributions that result when the variances of the rating positive and negative 

cases are equal (a) or different (b). 

 

In our air traffic control example, the positive and the negative scenarios were almost equal. While all 

factors such as horizontal and vertical aircraft speeds, directions, and approach angles were the same 

for both positive and negative cases, within the latter horizontal and vertical separations were created 

by separating their trajectories in the accordant direction. Hence, distinguishing a horizontal separation 

from a conflict only required the perception of the horizontal aircraft trajectories, whereas a vertical 



separation could be discriminated from a conflict by processing the vertical aircraft trajectories alone. 

Because of the characteristics of the visualizations, the air traffic controllers were more certain when 

judging vertical separations with 3D, but less certain when horizontal separations where displayed. 

That is, their expertise with 2D visualizations vanishes in case of vertical separation. 

 

Which response behaviour offers the best trade-off between hit and false alarm rate? 
 

For some applications it is important to know the response criterion that offers the best trade-off 

between hit and false alarm rate. This might be the case when the binary choice is one of many in a 

process, and therefore optimizing the criterion does not impede the overall efficacy as could be the 

case in airport security scans. The best criterion can be determined by selecting the highest value that 

results from calculating the Youden-index [1], which is calculated by adding the sensitivity (hit rate) 

to the specificity (1 - false alarm rate) and subtracting one. In our example with the air traffic 

controllers, the best trade-off between hit and false alarms for both visualizations results, if all cases 

that fall in the response options from ‘certainly yes’ till ‘maybe no’ would be treated as conflicts and 

all cases that are classified with ‘probably no’ and ‘certainly no’ as separations.  

 

DISCUSSIONS AND CONCLUSIONS 
 

A common concern about using rating scales with more than two response options is that either before 

or after gathering the data, the evaluator has to define a criterion to decide which cases are positive 

and which are negative. This is of special concern when this criterion has to be chosen arbitrarily. The 

above-described procedures illustrate that by reporting the sizes of the areas under the receiver operat-

ing characteristic curves, no such decision is required for evaluating the discrimination performance. 

Though the area under the curve can be calculated on the basis of binary responses, using an 

appropriate Likert-scale offers several advantages for the evaluation of human-machine-interfaces.  As 

stated above, the area under the curve offers measure of performance that is independent from judg-

ment certainty, and allows for an objective comparison of the discrimination performance without the 

results being influenced by the deciders’ applying different response criteria with the human-machine 

interfaces as a reaction on differences regarding expertise or characteristics of the task or situation. 

Moreover, using a Likert-scale allows the evaluator to assess the performance for any criterion or 

choosing one by which the performances are compared. Also the determination of the most efficient 

response criterion is possible and can be used for training deciders in order to achieve the best trade-

off between positive and false positive decisions. Above all, using a Likert-scale facilitates the 

deciders in rating the cases, because they are not forced to give a yes or no answer though they are un-

certain. 
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