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Abstract - This study aimed at developing an injury estimation algorithm for AACN technologies for Germany and 

compared them to findings based on Japanese data. 

The data to build and to verify the algorithm was obtained from the German in-depth Accident Database (GIDAS) and split 

into a training and a validation dataset. Significant input variables and the generalized linear regression model to predict 

severe injuries (ISS>15) were selected to maximize area under the receiver operating characteristic curve (AUC). 

Probit regression with the input parameter multiple impact, delta v, seatbelt use and impact direction gave the largest AUC of 

0.91. Sensitivity of the algorithm was validated at 90% and specificity at 76% for an injury risk threshold of 2%. 

It appears that no major differences between Japan and Germany exist for injury estimation based on delta v and impact 

direction. However, far side impact and multiple crash events appear to be associated with a larger risk increase in the 

German data. 

 

INTRODUCTION 

 
Fatalities from road traffic accidents can be reduced by accident avoidance before the collision, 

mitigation of consequences during a collision and medical treatment after a collision. Automatic 

Collision Notification (ACN) describes technologies that establish a communication link with rescue 

services and forward the position of the vehicle given a collision. The rescue services then decide on 

appropriate action. These technologies are established in US and Europe and know for example as 

“ecall” [1]. 

 

Advanced Automatic Collision Notification (AACN) describes technologies that exceed ACN 

functionality by estimating injury outcome based on some crash parameters. Medical rescue services 

have to dispatch the appropriate unit to the accident scene and transport any injured person to the 

appropriate medical facility. Appropriate hereby means that injury severity and medical treatment 

need to match: Treating severe injuries at non-specialized facilities (referred to as under triage) 

increases fatality risk [2] while treating minor injuries at specialized Trauma centers (referred to as 

over triage) might overload these and might lead to transport times longer than necessary. The 

information provided by AACN – an estimation of injury severity – aims at aiding medical rescue 

services to decide on appropriate action. AACN technologies are established in the USA, where for 

example OnStar is a system introduced on the market by General Motors in 1996 [3]. Most research 

concerns road traffic accidents in the USA or Japan. In Germany, AACN functionality is offered by 

BMW as part of “Connected Drive” since 2007. The “Urgency” algorithm was trained on US data to 

predict risk of severe injury [4]. It is not clear if the insights from research specific to the USA or 

Japan can be directly applied to Germany or how AACN technologies can be tuned to work effectively 

in Germany. Brehme et al. [5] developed an injury prediction tool for Germany based on GIDAS data, 

which was validated by Hannawald et al. [6]. The tool used logistic regression and a priori defined 

explanatory variables based on visual inspection of the accident scene to estimate the likelihood of 

single injuries.  

 

This study aims at developing an injury estimation algorithm for AACN technologies for Germany 

selecting regression model and explanatory variables as a set of crash parameters for best model fit 

and compared them to findings based on Japanese data [7]. 

 



METHODS 

 

Estimation output: A metric for injury severity 
 
Many metrics to quantify injury severity and estimate fatality risk have been developed. There is vast 

literature on this topic. A thorough review exceeds the scope of this paper. 

 

The metrics Maximum Abbreviated Injury Score (MAIS) [4,8] and Injury Severity Score (ISS) [9-10] 

are used to characterize injury severity for a patient. AIS and Mortality Risk Ration (MRR) [11] are 

used to characterize severity on injury level. For this study, the authors adapt findings of the German 

Trauma Registry. The RISC score [12] is used to estimate chances of fatality for a patient. Hospital 

performance is judged comparing actual fatality rates with those estimated by RISC. Further quality 

assessment is based on the time passed for several treatments for severely injured, whereby severely 

injured is defined by ISS≥16 [13]. As it is unclear for now how to relate RISC levels to appropriate 

medical care, the algorithm estimates the event of ISS≥16 and thereby the need for treatment in a 

specialized Trauma Center.  

 

Estimation input: Variables characterizing crash severity and vulnerability 
 
For the USA, it was recommended to primarily make use of  

� Delta v 

� Principal direction of Force (PDOF) 

� Seatbelt use 

� Crash with multiple impact  

� Vehicle type  

If contact with the occupant is possible, occupant age should also be used to estimate risk of having a 

severe injury (ISS>15) [9]. These input variables with an addition of occupant gender were used in the 

injury estimation model by Kononen et al. [10]. Yoshida et al. [7] used delta v and PDOF in a “base 

model” and added seatbelt use, multiple impact and occupant age in a “full model”. 

 

For this study, all the above mentioned variables were pooled with other variables as candidates for 

the injury estimation algorithm. Delta v and PDOF were taken from the collision that caused the 

largest damage to the vehicle. Further variables that potentially can estimate injury outcome were:  

� Roll-over event [yes / no] 

� Occupant height [cm], weight [kg], age [years] and gender 

� Vehicle registration [calendar year] 

 

Candidates were selected based on their expected contribution on injury outcome and their expected 

availability in the near future. For example, the authors expect occupant characteristics (height, weight 

age, gender) to influence injury outcome and to be available in the future through personalized car 

communication. Other variables, such as occupant position, collision partner, or structural engagement 

were not expected to be available in the near future and thus not included. 

 

The final input variables were determined by backward selection in several estimation models as 

described in the next section. That means, starting from a given set of variables the one with the 

highest p-value was removed until all p-values were below 0.1. Amongst the set of variables fulfilling 

the above condition, the final model was selected based on largest area under the receiver operating 

characteristic curve (AUC). AUC gives an overall measure of estimation accuracy, with a value of one 

representing perfect accuracy [14].  



Estimation model: Linking input and output 
 

Generalized linear regression models were used to relate injury risk R to input parameter X. Besides 

the popular logit [4,7,8,10] of the form Log(R/(1-R))=Xb, also probit Norminv(R)=Xb, and 

complementary log-log: log(-log(1-R))=Xb were modeled. Calculations were performed with Matlab 

R2013a using glmfit function. 

Sensitivity was calculated as the proportion of individuals with the outcome that are correctly 

classified: True positive / (true positive + false negative). Specificity was calculated as the proportion 

of individuals without the outcome that were correctly classified: True negative / (true negative + false 

positive). False positive rate was calculated as the proportion of given alarms that were false: False 

positive / (false positive + true positive). Similarly, false negative rate was calculated: False negative / 

(false negative + true negative).  

 

Threshold optimization: Binary response from estimated injury risk 
 

The regression model gives the probability of severe injury between 0% and 100%. A threshold for the 

decision transport to Trauma Center can be set arbitrarily (for example at 20% [9]) or chosen to 

minimize overtriage and undertriage [8]. In this study, the transport threshold was obtained through 

analysis of ROC. The distance of any point of the ROC to the target point was calculated. The distance 

depends on the injury threshold and is known. The threshold with largest distance to the target was 

selected. The target was 10% undertriage (1-sensitivity) and 50% overtriage (specificity). These values 

are recommended in the German Whitebook Medical Care of the Severely Injured [15].  

 

Dataset 
 

The data to build and to verify the algorithm was obtained from the German in-depth Accident 

Database (GIDAS). GIDAS cases are sampled to be representative for Germany but tend to be biased 

to higher injury severity [16]. The data used for this study was approximately representative for the 

injury severity in Germany: National data 2003-2012 for injured passenger car occupants (police 

reported) recorded fatal injuries in 1.1% of all cases, severe injuries in 14% and slight injury in 85% 

[17]. The GIDAS dataset for this study contained 1.7% fatal injuries and 19% severe injuries using the 

same police reported definitions. No weighting factors were applied. 

 

Complete cases from the years 2003-2012 were filtered for front seat occupants >15years in passenger 

cars and vehicle registration later than year 2000. Each front seat occupant was treated as a separate 

case. The data was split into a training dataset (to build the algorithm) with uneven case numbers 

(n=1942) and a validation dataset (even case numbers, n=2048). Some characteristics of the datasets 

are given in table 1. There was no obvious difference between the sets. For backward model selection, 

omission of incomplete data was done specifically for each model, depending on the included 

variables. This means that the number of data differs between models. 

 

Table 1: Characteristics of training and validation data 

Variable  Training data Validation data 

Injury outcome ISS>15 52 (3%) 41 (2%) 

 ISS<15 1795 (92%) 1894 (93%) 

 ISS unknown 95 (5%) 113 (6%) 

DV Mean 22.2 km/h 22.8 km/h 

 SD 15.4 km/h 15.3 km/h 

Impact direction Front 984 (51%) 1067 (52%) 

 Near Side 250 (13%) 255 (13%) 

 Far Side 191 (10%) 174 (9%) 

Belt use  1751 (96%) 1843 (95%) 

Occupant age mean 41 years 42 years 

 SD 16 years 17 years 



RESULTS 

 
The largest AUC resulted from a probit model with the input parameter multiple impact, delta v, 

seatbelt use and impact direction. AUC was 0.908. Best fit model specifications (regression 

coefficients b, standard error of coefficients and p-value of coefficients) are given in Table 2. The 

ROC curve is depicted in figure 1. Sensitivity, specificity, false positive rate and false negative rate are 

depicted in figure 2. Best sensitivity (92%) and specificity (75%) was reached at a threshold of R = 

2%. 

 

Table 2: Best fit model specification 

Parameter Unit b SE p-value 

Intercept - -2.912 0.297 <0.001 

Multi impact Yes = 1, No = 0 0.375 0.157 0.0169 

Delta v Km/h 0.040 0.004 <0.001 

Seatbelt use Use = 1, No use = 0 -0.708 0.238 0.0029 

Impact direction Near side = 1, other = 0 0.512 0.225 0.0231 

 Far side = 1, other = 0 0.923 0.208 <0.001 

 Front - - - 

 Rear - - - 

 

Figure 3 illustrates the regression results. Severe injury risk for a single belted front or rear impact was 

5% at a delta v of 50 km/h. When unbelted, the risk more than tripled to 18%. A belted near side 

impact at delta v of 50 km/h lead to a risk of severe injury of 13%. 

 

  
Figure 1: ROC curve of best fit model Figure 2: Characteristics of best fit model 

 

 
The probit model with specifications as given in Table 2 and a threshold for estimating injury of 

R≥2% was validated against the GIDAS validation dataset. Sensitivity was 90% (target: ≥90%), 

specificity was 76% (target: ≥50%), false positive rate was 92%, and false negative rate was 0.3%.  



 
Figure 3: Best fit model injury risk curves 

 

DISCUSSION 

 
There is some indication that far side accidents were associated with a higher probability of severe 

injuries than near side accidents. In contrast, crash mechanics imply that, due to intrusion and contact 

injuries, near side impacts are more likely to lead to severe injury than far side impacts. The difference 

in probability in this study was statistically not significant and therefore might be coincidence. 

Alternatively, the difference might be due to a high share of cars equipped with advanced near side 

impact protection, such side airbags (59% of vehicles equipped) which were shown to reduce injuries 

[18]. Furthermore, results might be confounded with impact angles. In the training dataset of this study, 

far side impacts occurred more often angled towards the front. 

 

Table 3 summarizes the ten injury estimation models with largest AUC. Number of data points used 

(#) and severe injuries in the set (# ISS>15) are also given. The type of generalized linear regression 

model appears to have only marginal influence on result. The top scoring estimation model contained 

the same variables independent of regression model. Multiple impact (“Multi”), delta v (“DV”), 

seatbelt use (“SB”), and impact direction (near side impact: “Near”, far side impact: “Far” were the 

most commonly found estimator variables. Roll-over event (“Roll”) and vehicle type (“Van” and 

passenger car (“Pas”)) were included in the models ranking 7-10. Differences due to logit, probit or 

complementary log-log model appear to be of little importance for estimator variable selection and 

AUC. It can be noted that risk curves did merely differ for risks below 50% as illustrated in figure 4. 

However, there was no reason not to benefit from the slightly better performance of the probit model, 

thus probit was proposed and not the commonly used logit. 



Table 3: Top ten injury estimation models according to AUC 

Model variables    AUC # # ISS>15 

Probit Multi DV SB Near Far  0.908038 1719 49 

Logit Multi DV SB Near Far  0.907002 1719 49 

c-loglog Multi DV SB Near Far  0.906495 1719 49 

c-loglog Multi DV SB Far   0.9054091 1719 49 

Logit Multi DV SB Far   0.90526 1719 49 

Probit Multi DV SB Far   0.905214 1719 49 

c-loglog Multi DV SB Near Far Van 0.9038293 1662 46 

c-loglog Multi DV SB Near Far Pas 0.9036431 1662 46 

Probit Roll DV SB Near Far  0.903423 1717 49 

Logit Roll DV SB Near Far  0.902209 1717 49 

 

Table 4 displays model characteristics for other input variables. Model 1 and model 2 were developed 

from Japanese data (n=5 090 980) [7] where all variables were significant in logistic regression to 

estimate police classified injury outcome (severe and fatal injury versus slight and no injury). Model 3 

was developed from US data (NASS CDS, n = 14 673) where all variables except vehicle type were 

significant in logistic regression to estimate ISS>15 versus ISS<15 injury outcome [10]. Note that 

regression coefficients were computed from the training dataset of this study and not taken from 

literature. 

 

The model proposed in this study met targeted specificity and sensitivity. This performance can be 

compared to the injury estimation model 1 to 2 from the literature, using the given parameter and 

coefficients. Model 3 cannot be compared directly, as parameters are given on vehicle level, not 

occupant level. In a first step, the threshold was calculated from the training data to maximize positive 

distance to the target. In a second step, the performance was calculated with the validation dataset 

 

 
Figure 4: Injury risk curves from logit, probit and complementary log-log regression 



Table 4: Model characteristics for alternative input variable selection 

Model Input variables AUC # 

This study Multiple Impact, Delta v, Near Side, Far Side, Belt use 0.9080 1719 

1(Logit) Delta v, Front*, Near Side, Far Side 0.8910 1801 

2(Logit) Multiple Impact, Delta v, Front*, Near Side*, Far Side, 

Belt use, Age* 

0.9067 1706 

3(Logit) Multiple Impact, Delta v, Front*, Near Side*, Far Side, 

Belt use, Age*, Gender*, Vehicle type 

0.9041 1647 

* not significant at p<0.1 

 

 

Performance is given in table 5. The “base model” from Yoshida et al. (2012) exceeded targeted 

specificity and sensitivity. Sensitivity, false positive and false negative rate were comparable to the 

model developed in this study but specificity was 14% lower. 

 
Using GIDAS data, one or several of the input variables were not significant. A real difference 

between US, Japan and Germany for injury outcome might be the underlying reason. Insignificant 

results could also be due to lower case numbers in this study while there is no difference in injury 

outcome explanation between the countries. The performance of the estimation models from literature 

with respect to AUC were similar to the best rated ones in this study besides use of non-significant 

estimator variables. However, the authors believe that the chance of estimating injury outcome based 

on non-existing relationships is high when using non-significant variables, thus the model in this study 

was chosen to only contain significant variables.  

 

The injury threshold to decide on transport to a Trauma Center is well below the recommendation of 

the Recommendations from the Expert Panel of 20% [9]. It might be more meaningful to determine 

target sensitivity and specificity according to medical, political and other considerations and to 

compute an appropriate threshold than to set a threshold arbitrarily and to deal with sensitivity and 

specificity as model outcome. 

 

It appears that no major differences between Japan and Germany exist for severe injury estimation 

based on delta v and impact direction. The “full model” performance was lower, indicating that the 

influence of the additional variables might differ between the data from Japan and Germany. When 

comparing the coefficients for a logistic regression in the variable formulation of Yoshida et al. [7], 

Table 6 shows differences between the original regression coefficients calculated on the Japanese data 

and the ones calculated on the German data based on the training dataset for crash direction far side 

(base model, significant at p<0.1) and multiple crash (full model, significant at p<0.05). Statistical 

significance of difference in coefficients was calculated with a two-sided independent sample t-test. 

One must keep in mind though that the German data fit predicts ISS>15 injury while the Japanese data 

fit predicts police reported severe injury. 

 

 

 

Table 5: Comparative performance of injury estimation models 

 Best fit model 

(this study) 

Yoshida et al. 

(2012) “base” 

Yoshida et al. 

(2012) “full” 

Target 

Threshold 2% 1.3% 1.3% - 

Sensitivity 90% 92% 82% ≥90% 

Specificity 76% 62% 66% ≥50% 

False positive rate 92% 93% 94% - 

False negative rate 0.3% 0.4% 0.8% - 

Number of TN 1332 1105 1120 - 

Number of TP 35 48 40 - 

Number of FN 4 4 9 - 

Number of FP 422 690 583 - 



Bose et al. [19] pointed out two limitations of regression models used in literature: The inability to 

capture non-linear effects and the lack of interaction terms. These limitations exist in this study as 

well. Interaction terms might improve accuracy, but the dataset was deemed too small for meaningful 

modelling. Modelling of interaction terms and non-linear effects requires future work on a larger 

dataset. Survival analysis can make use of censoring information in time to failure analyses. One could 

formulate the injury estimation model as survival regression with for example delta v as “time” 

variable and other variables as confounders. This would account for delta v not being exact, i.e. a 

sustained injury might also have been sustained at a lower speed. Survival regression would yield 

results for the data at hand. But delta v differs from time in one important aspect: Time to failure is a 

cumulative measure, which means time is gradually increased until failure is reached while delta v is a 

singular input (dose). Outcome (response) is likely to differ between a single input and cumulative 

input: Injury might be sustained at lower delta v if collisions are repeated at ever increasing delta v 

compared to a single collision at a specific delta v. Thus, it is questionable whether survival regression 

is applicable for the injury estimation model. Non-linear methods should be explored in the future. 

 

As an alternative to backward selection, Akaike Information Criterion (AIC) can be computed on any 

combination of predictor variables. AIC consists of a term indicating how well the data fits to the 

model and a penalty term for the number of model variables:  

AIC = -2 * Log likelihood + 2 * (Number of estimator variables) 

 

For model selection based on AIC, all data with missing information for at least one variable needs to 

be omitted to keep a constant dataset across models. This would lead to 1104 cases in the training data 

with 18 cases of ISS>15. Over fitting was likely to be an issue and model selection based on AIC was 

ruled out for this study. 

 

 

 

 

 

 

 

 

Table 6: Regression coefficients for Japanese data fit and German data fit 

  Base 

model 

German 

data 

 

SE 

Full 

model 

German 

data 

 

SE 

Intercept  -5.326 -5.421 0.541 -4.129 -4.343 0.736 

Delta v <30 -      

 31-40 2.161 1.921 0.453 2.052 1.892 0.472 

 41-50 2.99 2.426 0.503 2.858 2.384 0.533 

 51-60 3,467 3.480 0.489 3.310 3.509 0.52 

 >60 4.175 4.547 0.509 3.995 4.645 0.523 

Crash direction Front 0.257 0.151* 0.576 0.163 0.038* 0.59 

 Near side 1.524 1.120 0.659 1.446 1.080* 0.674 

 Far side 1.082 2.143 0.605 0.984 1.890 0.635 

 Rear -      

Belt use Yes    -1.371 -1.519 0.47 

 No       

Multiple crash Yes    0.099 0.784 0.328 

 No       

Occupant age <54       

 55-64    0.477 -0.605* 0.66 

 >65    0.812 0.413* 0.439 

*not significant at p<0.1; Significant differences between Japanese and German fit coefficients at 

p<0.1 in bold, significant differences at p<0.05 in italic and bold 



CONCLUSION 

 
An algorithm to estimate severe injury (ISS>15) for front seat passenger car occupants older than 

15years was developed and validated based on GIDAS data. The model with significant input 

variables and the best estimation results (largest AUC) was found to make use of information about 

delta v, multiple impact, seatbelt use, and crash direction: Far side and near side impact. Injuries in 

front and rear-end collisions can be estimated, but did not require a specific regression coefficient. A 

probit model is proposed, but logit or complementary log-log regressions gave similar results. 

Sensitivity was 90% and specificity was 76%, meeting target performance. 

 

The “base model” developed by Yoshida et al. [7] for injury estimation in Japan showed a comparable 

performance using delta v and crash direction information. It appears that no major differences exist 

for injury estimation in Japan and Germany based on these variables. However, far side impact and 

multiple crash events appear to be associated with a larger risk increase in the German data. Further 

research is required to investigate these differences, and to validate the model and estimator selection 

proposed in this study with a larger dataset. 
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